Search results

Search for "antimony" in Full Text gives 27 result(s) in Beilstein Journal of Nanotechnology.

Curcumin-loaded nanostructured systems for treatment of leishmaniasis: a review

  • Douglas Dourado,
  • Thayse Silva Medeiros,
  • Éverton do Nascimento Alencar,
  • Edijane Matos Sales and
  • Fábio Rocha Formiga

Beilstein J. Nanotechnol. 2024, 15, 37–50, doi:10.3762/bjnano.15.4

Graphical Abstract
  • cause systemic infection affecting the liver, spleen, hematogenous and lymphatic systems [5][6]. For the treatment of these infections, therapies based on pentavalent antimony (first-line drug treatment), amphotericin B, miltefosine, and paromomycin have been employed [7]. Despite being effective, these
PDF
Album
Review
Published 04 Jan 2024

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • have attracted the interest of a large community of scientists. With a low melting point of just above 544 K, Bi is less toxic than its neighbours in the periodic table, antimony, lead, and polonium. The structure of the bismuth crystal, which has rhombohedral symmetry, is typical of the group-V
PDF
Album
Review
Published 03 Mar 2023

Revealing the formation mechanism and band gap tuning of Sb2S3 nanoparticles

  • Maximilian Joschko,
  • Franck Yvan Fotue Wafo,
  • Christina Malsi,
  • Danilo Kisić,
  • Ivana Validžić and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 1021–1033, doi:10.3762/bjnano.12.76

Graphical Abstract
  • . Based on morphological and structural analyses, it is suggested that seed particles (type 0) formed immediately after injecting the antimony precursor into the sulfur precursor. These seeds fused to form amorphous nanoparticles (type I) that contained a lower percentage of sulfur than that corresponding
  • are several requirements for materials to be eligible for application in the field of photovoltaics, such as high absorption performance, nontoxicity, abundance, efficiency, and low cost. As a semiconductor with a low band gap and a high absorption coefficient, antimony(III) sulfide (Sb2S3) has become
  • hot-injection method at a temperature between 180 and 240 °C [17][18][20], yield nanoparticles not smaller than 100 nm or, almost instantaneously, rods, tubes, or wires in the micron size. Abulikemu et al. have investigated the influence of different sulfur and antimony precursors, injection (140–220
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2021

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
  • safely in intermetallic anodes, from which Na ions are reversibly released during discharging and charging processes. Among the most common alloying elements in SiBs are tin [74], antimony [75], and to a lesser degree phosphorous [76]. These elements can be either directly sodiated to form Na alloys or
PDF
Album
Review
Published 09 Sep 2021

Excitonic and electronic transitions in Me–Sb2Se3 structures

  • Nicolae N. Syrbu,
  • Victor V. Zalamai,
  • Ivan G. Stamov and
  • Stepan I. Beril

Beilstein J. Nanotechnol. 2020, 11, 1045–1053, doi:10.3762/bjnano.11.89

Graphical Abstract
  • symmetry in the Brillouin zone (k = 0) for crystals with an orthorhombic symmetry (Рnma). The photoelectric properties of the Me–Sb2S3 structures were investigated in the spectral range 1–1.8 eV under E||c and E⟂c polarization conditions and at different applied voltages. Keywords: anisotropy; antimony
  • triselenide; band structure; excitons; optical spectroscopy; reflection and absorption spectra; Introduction Antimony selenide (Sb2Se3) is an inorganic semiconductor compound with interesting photoelectric properties. This material has a high absorption coefficient (≈105 cm−1) in the region of maximum solar
  • splitting, as well as the effective mass of electrons and holes were estimated for Sb2Se3 single crystals. Experimental Bulk Sb2Se3 crystals were obtained by fusion (T ≈ 700–730 °C) of antimony (Sb) and selenium (Se) taken in the stoichiometric ratio. The growth method used for Sb2S3 [24] was adapted here
PDF
Album
Full Research Paper
Published 16 Jul 2020

Antimony deposition onto Au(111) and insertion of Mg

  • Lingxing Zan,
  • Da Xing,
  • Abdelaziz Ali Abd-El-Latif and
  • Helmut Baltruschat

Beilstein J. Nanotechnol. 2019, 10, 2541–2552, doi:10.3762/bjnano.10.245

Graphical Abstract
  • : alloy; antimony; Au(111); electrodeposition; insertion; STM; Introduction Rechargeable batteries have become essential energy storing devices, which are widely used in portable electronic devices and hybrid electric vehicles. Magnesium-based secondary batteries have been regarded as a viable
  • insertion material, because magnesium can form intermetallic compounds with antimony. In addition, Sb has a rhombohedral crystal structure, which can form an alloy over a wide composition range [6][7]. The high initial capacity of 298 mAh/g at 1C rate has been reported for electrochemical magnetization at
  • surface has never been reported. Using this layer for such an insertion study in fundamental research offers the advantage of a better defined structure of the insertion compound as compared to the use of small particles in battery research. The initial cyclic voltammetry study of antimony electrochemical
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2019

Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Lothar Weinhardt,
  • Monika Blum,
  • Clemens Heske,
  • Wanli Yang,
  • Ilona Oja Acik and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 2396–2409, doi:10.3762/bjnano.10.230

Graphical Abstract
  • . Keywords: antimony sulfide; semitransparent solar cells; solar windows; thin films; ultrasonic spray pyrolysis; Introduction Modern buildings, especially high-rise buildings, have a large window area available for building-integrated photovoltaics (BIPV). Covering the windows with semitransparent thin
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2019

Uniform Sb2S3 optical coatings by chemical spray method

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Ilona Oja Acik,
  • Arvo Mere and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 198–210, doi:10.3762/bjnano.10.18

Graphical Abstract
  • Jako S. Eensalu Atanas Katerski Erki Karber Ilona Oja Acik Arvo Mere Malle Krunks Laboratory of Thin Film Chemical Technologies, Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia 10.3762/bjnano.10.18 Abstract Antimony
  • pyrolysis in air by tuning of the deposition temperature, the Sb/S precursor molar ratio in the spray solution, and the post-deposition treatment temperature. Keywords: antimony sulfide; thin films; ultrasonic spray; vacuum annealing; Volmer–Weber growth; Introduction Antimony sulfide (Sb2S3) is an
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2019

Zn/F-doped tin oxide nanoparticles synthesized by laser pyrolysis: structural and optical properties

  • Florian Dumitrache,
  • Iuliana P. Morjan,
  • Elena Dutu,
  • Ion Morjan,
  • Claudiu Teodor Fleaca,
  • Monica Scarisoreanu,
  • Alina Ilie,
  • Marius Dumitru,
  • Cristian Mihailescu,
  • Adriana Smarandache and
  • Gabriel Prodan

Beilstein J. Nanotechnol. 2019, 10, 9–21, doi:10.3762/bjnano.10.2

Graphical Abstract
  • .) antimony by spray pyrolysis [9] or by sol–gel methods followed by spin-coating and annealing in different environments [10], ii.) manganese by long-time annealing of Mn/SnO2 bilayers in air at 200 °C [11] or by co-precipitation [12], iii.) aluminum, copper or indium all by spray pyrolysis from ethanolic
PDF
Album
Full Research Paper
Published 02 Jan 2019

Lead-free hybrid perovskites for photovoltaics

  • Oleksandr Stroyuk

Beilstein J. Nanotechnol. 2018, 9, 2209–2235, doi:10.3762/bjnano.9.207

Graphical Abstract
  • promising PCE exceeding 17.5% [104]. The introduction of Sb(III) during the growth of MAPI HP results in the substitution of lead with antimony and formation of a MA3Sb2I9 layer on the surface of growing MAPI crystals thus limiting their size to ≈50 nm [105]. An enhanced PL of the Sb-doped MAPI crystals
  • indicates that the electron–hole recombination is efficiently suppressed by the surface antimony-rich layer [105]. Sn-based hybrid perovskites The MASnI3 perovskite displays a bandgap of ≈1.3 eV [74][81] corresponding to the absorption onset at λe ≈ 950 nm, which is significantly shifted as compared to the
  • and structure in prolonged tests even without additional encapsulation. In the case of antimony, stable compounds of MA3Sb2I9 [90][153], MASbSI2 [87], and Cs3Sb2I9 [88][89][90][154] were reported, while for bismuth, a larger array of compositions was studied, including MA3Bi2I9 (MABI) [84][85][155
PDF
Album
Review
Published 21 Aug 2018

Spin-coated planar Sb2S3 hybrid solar cells approaching 5% efficiency

  • Pascal Kaienburg,
  • Benjamin Klingebiel and
  • Thomas Kirchartz

Beilstein J. Nanotechnol. 2018, 9, 2114–2124, doi:10.3762/bjnano.9.200

Graphical Abstract
  • Pascal Kaienburg Benjamin Klingebiel Thomas Kirchartz IEK5-Photovoltaics, Forschungszentrum Jülich, 52425 Jülich, Germany Faculty of Engineering and CENIDE, University of Duisburg-Essen, Carl-Benz-Str. 199, 47057 Duisburg, Germany 10.3762/bjnano.9.200 Abstract Antimony sulfide solar cells have
  • conditions, the role of the polymeric hole transport material is discussed. The efficiency of our best solar cells exceeds previous reports for each processing route, and our champion device displays one of the highest efficiencies reported for planar antimony sulfide solar cells. Keywords: antimony sulfide
  • ; hole transport material; solar cell; Introduction Antimony sulfide (Sb2S3) is a promising high band gap light absorber for solar cells [1][2][3][4][5]. The record efficiency of 7.5% [6] is comparable to that of other less investigated materials, such as the best lead-free perovskites [7], Cu2O [8] and
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2018

Recent highlights in nanoscale and mesoscale friction

  • Andrea Vanossi,
  • Dirk Dietzel,
  • Andre Schirmeisen,
  • Ernst Meyer,
  • Rémy Pawlak,
  • Thilo Glatzel,
  • Marcin Kisiel,
  • Shigeki Kawai and
  • Nicola Manini

Beilstein J. Nanotechnol. 2018, 9, 1995–2014, doi:10.3762/bjnano.9.190

Graphical Abstract
  • experiments of gold and antimony nanoparticles on highly oriented pyrolithic graphite (HOPG) [46], where the precise value of γ was found to depend sensitively on the crystallinity of the particles. As predicted theoretically [66][67], γ = 0.5 was found for the case of amorphous Sb nanoparticles, whereas
PDF
Album
Review
Published 16 Jul 2018

An implementation of spin–orbit coupling for band structure calculations with Gaussian basis sets: Two-dimensional topological crystals of Sb and Bi

  • Sahar Pakdel,
  • Mahdi Pourfath and
  • J. J. Palacios

Beilstein J. Nanotechnol. 2018, 9, 1015–1023, doi:10.3762/bjnano.9.94

Graphical Abstract
  • shown in the next section. Multilayer antimonene As an elemental bulk material, Sb appears to be a topological semi-metal due to an inversion of the ”natural” bulk band order [1]. Despite the absence of a bulk gap, its non-zero topological invariant guarantees that antimony features protected
PDF
Album
Full Research Paper
Published 28 Mar 2018

Group-13 and group-15 doping of germanane

  • Nicholas D. Cultrara,
  • Maxx Q. Arguilla,
  • Shishi Jiang,
  • Chuanchuan Sun,
  • Michael R. Scudder,
  • R. Dominic Ross and
  • Joshua E. Goldberger

Beilstein J. Nanotechnol. 2017, 8, 1642–1648, doi:10.3762/bjnano.8.164

Graphical Abstract
  • %), or antimony (Strem 99%) was used to replace germanium in the initial calcium and germanium mixture. Again, these materials were sealed in quartz tubes under vacuum and annealed following the same procedures as undoped germanane. The experiments with Sb resulted in the formation of a mixture of
PDF
Album
Full Research Paper
Published 09 Aug 2017

Oxidative chemical vapor deposition of polyaniline thin films

  • Yuriy Y. Smolin,
  • Masoud Soroush and
  • Kenneth K. S. Lau

Beilstein J. Nanotechnol. 2017, 8, 1266–1276, doi:10.3762/bjnano.8.128

Graphical Abstract
  • Yuriy Y. Smolin Masoud Soroush Kenneth K. S. Lau Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, USA 10.3762/bjnano.8.128 Abstract Polyaniline (PANI) is synthesized via oxidative chemical vapor deposition (oCVD) using aniline as monomer and antimony
  • operated to tune the deposition and chemistry of emeraldine PANI. Experimental oCVD deposition of polyaniline The oCVD process for PANI (Figure 2a) involves flowing vapors of the monomer (aniline) and the oxidant (antimony pentachloride, SbCl5) into the reactor continuously. Nitrogen gas is used as an
  • ]. Aniline (Sigma-Aldrich, ACS reagents, >99.5%) and antimony pentachloride oxidant (Sigma-Aldrich, 99%) were used as-received without further purification. Separate source vessels containing antimony pentachloride and aniline were heated to 60 °C to produce sufficient vapors that were metered into the oCVD
PDF
Album
Supp Info
Full Research Paper
Published 16 Jun 2017

Synthesis of coaxial nanotubes of polyaniline and poly(hydroxyethyl methacrylate) by oxidative/initiated chemical vapor deposition

  • Alper Balkan,
  • Efe Armagan and
  • Gozde Ozaydin Ince

Beilstein J. Nanotechnol. 2017, 8, 872–882, doi:10.3762/bjnano.8.89

Graphical Abstract
  • application areas of these sensors can be extended. Experimental The monomers aniline (99.5%, Sigma-Aldrich), HEMA (99%, Sigma Aldrich), the crosslinker ethylene glycol dimethacrylate (98%, Sigma Aldrich) (EGDMA), the initiator tert-butyl peroxide (98%, Sigma Aldrich) (TBPO) and the oxidant antimony
PDF
Album
Full Research Paper
Published 18 Apr 2017

Sb2S3 grown by ultrasonic spray pyrolysis and its application in a hybrid solar cell

  • Erki Kärber,
  • Atanas Katerski,
  • Ilona Oja Acik,
  • Arvo Mere,
  • Valdek Mikli and
  • Malle Krunks

Beilstein J. Nanotechnol. 2016, 7, 1662–1673, doi:10.3762/bjnano.7.158

Graphical Abstract
  • Sb2S3 sensitizer, yielded conversion efficiencies above 3% [15][16]. The central part of the particular system, the Sb2S3 absorber, has so far been produced mainly by chemical bath deposition (CBD) for which the presence of impurities such as antimony hydroxide is inherent, and it is essential to use
  • CSP without the post-deposition heat treatment stage, yielding solar cell conversion efficiencies up to 1.9% when coupled with a planar TiO2 layer, also grown by spray in air. Results and Discussion Influence of the molar ratio of the precursors on phase composition and morphology of the antimony
  • spectrum C1 (dashed line, characteristic of the dark regions), and as spectrum C2 (solid line, characteristic of the orange colored regions). The broad band centered around 290 cm−1 in spectrum C2 is attributed to amorphous antimony sulfide as in other antimony sulfide layers produced by CBD [7][16][40][41
PDF
Album
Supp Info
Full Research Paper
Published 10 Nov 2016

Determination of Young’s modulus of Sb2S3 nanowires by in situ resonance and bending methods

  • Liga Jasulaneca,
  • Raimonds Meija,
  • Alexander I. Livshits,
  • Juris Prikulis,
  • Subhajit Biswas,
  • Justin D. Holmes and
  • Donats Erts

Beilstein J. Nanotechnol. 2016, 7, 278–283, doi:10.3762/bjnano.7.25

Graphical Abstract
  • cross section of nanowires. The results obtained from the two methods are consistent and show that nanowires exhibit Young’s moduli comparable to the value for macroscopic material. An increasing trend of measured values of Young’s modulus is observed for smaller thickness samples. Keywords: antimony
  • sulfide; in situ; mechanical properties; nanowires; Young’s modulus; Introduction Antimony sulfide or stibnite is a highly anisotropic semiconductor material with potential applications in thermoelectric and optoelectronic [1][2] devices due to its high achievable thermoelectric power and
PDF
Album
Full Research Paper
Published 19 Feb 2016

Self-organization of gold nanoparticles on silanated surfaces

  • Htet H. Kyaw,
  • Salim H. Al-Harthi,
  • Azzouz Sellai and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2015, 6, 2345–2353, doi:10.3762/bjnano.6.242

Graphical Abstract
  • n-type antimony doped Si tips (TAP 525, Bruker) with a resonance frequency of 375–675 kHz at 0.5 Hz scan speed. For static contact angle measurements, the “sessile droplet” method was used to determine the surface wetting nature of APTES-functionalized glass surfaces using ThetaLite attention
PDF
Album
Full Research Paper
Published 10 Dec 2015

Hematopoietic and mesenchymal stem cells: polymeric nanoparticle uptake and lineage differentiation

  • Ivonne Brüstle,
  • Thomas Simmet,
  • Gerd Ulrich Nienhaus,
  • Katharina Landfester and
  • Volker Mailänder

Beilstein J. Nanotechnol. 2015, 6, 383–395, doi:10.3762/bjnano.6.38

Graphical Abstract
  • oxide with a dextran shell), no toxicity and normal differentiation behavior was shown for hHSCs [6][7][8]. A study with diverse inorganic nanoparticles of different sizes showed distinct toxicity for some particles (cobalt, antimony oxide) as well as some negative influence on the differentiation
PDF
Album
Supp Info
Full Research Paper
Published 05 Feb 2015

Electronic and electrochemical doping of graphene by surface adsorbates

  • Hugo Pinto and
  • Alexander Markevich

Beilstein J. Nanotechnol. 2014, 5, 1842–1848, doi:10.3762/bjnano.5.195

Graphical Abstract
  • ) with holes by metal atoms with high electron affinity such as bismuth, antimony and gold. In the case of doping with bismuth and antimony the electron extraction from graphene only reduced the natural intrinsic n-type character of EG on SiC while gold actually shifted the Dirac point above the Fermi
PDF
Album
Review
Published 23 Oct 2014

Review of nanostructured devices for thermoelectric applications

  • Giovanni Pennelli

Beilstein J. Nanotechnol. 2014, 5, 1268–1284, doi:10.3762/bjnano.5.141

Graphical Abstract
  • be obtained by ternary alloys based on bismuth/tellurium and antimony (typically p-doped) or selenium (typically n-doped) [22][23][24][25]. Values of the Z factor in excess of 4.5 × 10−3 K−1 (ZT in excess of 1.4) at room temperature have been found. A further increase of the Z factor has been
  • measured in nanostructured bismuth antimony telluride alloys, because phonon scattering at nanocrystal boundaries gives a reduced thermal conductivity [26]. Hovewer, TEGs based on bismuth telluride compounds have a small operating temperature range, because the Z factor rapidly decreases well below 2 × 10
PDF
Album
Review
Published 14 Aug 2014

Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

  • Hongjun Chen and
  • Lianzhou Wang

Beilstein J. Nanotechnol. 2014, 5, 696–710, doi:10.3762/bjnano.5.82

Graphical Abstract
  • photosensitization of nanoporous titanium dioxide, zinc oxide, tin dioxide, niobium oxide, and tantalum oxide by quantum-sized cadmium sulfide, lead sulfide, silver sulfide, antimony sulfide, and bismuth sulfide. They found that the photocurrent quantum yields of these photosensitized transition metal oxides can be
PDF
Album
Review
Published 23 May 2014

Nanoscale particles in technological processes of beneficiation

  • Sergey I. Popel,
  • Vitaly V. Adushkin and
  • Anatoly P. Golub'

Beilstein J. Nanotechnol. 2014, 5, 458–465, doi:10.3762/bjnano.5.53

Graphical Abstract
  • relatively low. Native gold often occurs together with quartz and is always associated with iron, copper, antimony, lead, and zinc sulfides. Quartz, barite, and carbonates are the major gangue minerals. In addition to native gold, the primary ores contain pyrite, arsenopyrite, sphalerite, and galena. Several
PDF
Album
Full Research Paper
Published 11 Apr 2014

Exploring the retention properties of CaF2 nanoparticles as possible additives for dental care application with tapping-mode atomic force microscope in liquid

  • Matthias Wasem,
  • Joachim Köser,
  • Sylvia Hess,
  • Enrico Gnecco and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2014, 5, 36–43, doi:10.3762/bjnano.5.4

Graphical Abstract
  • cantilever probe in the dynamic mode to manipulate as-synthesized latex nanoparticles on Si in ambient [13]. Other authors manipulated antimony nanoparticles [14] and gold nanoparticles [15] on graphite also under ambient conditions. Mougin and co-workers moved as-synthesized and functionalized gold
PDF
Album
Full Research Paper
Published 13 Jan 2014
Other Beilstein-Institut Open Science Activities