Search results

Search for "atomic force microscope" in Full Text gives 182 result(s) in Beilstein Journal of Nanotechnology.

Sputtering of silicon nanopowders by an argon cluster ion beam

  • Xiaomei Zeng,
  • Vasiliy Pelenovich,
  • Zhenguo Wang,
  • Wenbin Zuo,
  • Sergey Belykh,
  • Alexander Tolstogouzov,
  • Dejun Fu and
  • Xiangheng Xiao

Beilstein J. Nanotechnol. 2019, 10, 135–143, doi:10.3762/bjnano.10.13

Graphical Abstract
  • atomic force microscope (AFM). As reference samples, we use a bulk single crystalline silicon. These samples before irradiation were etched in 10% HF solution to remove a surficial thin oxide layer. Both sets of the samples were irradiated with the cluster beam at a right angle to the plane of the
PDF
Album
Full Research Paper
Published 10 Jan 2019

Threshold voltage decrease in a thermotropic nematic liquid crystal doped with graphene oxide flakes

  • Mateusz Mrukiewicz,
  • Krystian Kowiorski,
  • Paweł Perkowski,
  • Rafał Mazur and
  • Małgorzata Djas

Beilstein J. Nanotechnol. 2019, 10, 71–78, doi:10.3762/bjnano.10.7

Graphical Abstract
  • μm while the standard deviation (SD) was equal to 0.543 μm (Figure 1b). The calculations were done using ImageJ software (V. 1.52a). The thickness of the GO flake samples was measured using a MFP 3D BIO (Asylum Research/Oxford Instruments) atomic force microscope (AFM) working in semi-contact regime
  • (grant no. 1644/MOB/V/2017/0), Military University of Technology grant no. PBS 23-652, and the Institute of Electronic Materials Technology (Statutory Research 2018). The authors would like to thank Dr. Adrian Chlanda for the measurements using the atomic force microscope and Mr. Jerzy Dziaduszek for
PDF
Album
Full Research Paper
Published 07 Jan 2019

Characterization and influence of hydroxyapatite nanopowders on living cells

  • Przemyslaw Oberbek,
  • Tomasz Bolek,
  • Adrian Chlanda,
  • Seishiro Hirano,
  • Sylwia Kusnieruk,
  • Julia Rogowska-Tylman,
  • Ganna Nechyporenko,
  • Viktor Zinchenko,
  • Wojciech Swieszkowski and
  • Tomasz Puzyn

Beilstein J. Nanotechnol. 2018, 9, 3079–3094, doi:10.3762/bjnano.9.286

Graphical Abstract
  • done taking into account at least 15 different agglomerates for each sample. Atomic force microscopy Atomic force microscope (AFM) was used for topography imaging, surface evaluation at the nanoscale and evaluation of the particle shapes [35]. The sample preparation protocol was as follows: A water
PDF
Album
Full Research Paper
Published 27 Dec 2018

In situ characterization of nanoscale contaminations adsorbed in air using atomic force microscopy

  • Jesús S. Lacasa,
  • Lisa Almonte and
  • Jaime Colchero

Beilstein J. Nanotechnol. 2018, 9, 2925–2935, doi:10.3762/bjnano.9.271

Graphical Abstract
  • 46556, USA 10.3762/bjnano.9.271 Abstract Under ambient conditions, surfaces are rapidly modified and contaminated by absorbance of molecules and a variety of nanoparticles that drastically change their chemical and physical properties. The atomic force microscope tip–sample system can be considered a
PDF
Album
Full Research Paper
Published 23 Nov 2018

Charged particle single nanometre manufacturing

  • Philip D. Prewett,
  • Cornelis W. Hagen,
  • Claudia Lenk,
  • Steve Lenk,
  • Marcus Kaestner,
  • Tzvetan Ivanov,
  • Ahmad Ahmad,
  • Ivo W. Rangelow,
  • Xiaoqing Shi,
  • Stuart A. Boden,
  • Alex P. G. Robinson,
  • Dongxu Yang,
  • Sangeetha Hari,
  • Marijke Scotuzzi and
  • Ejaz Huq

Beilstein J. Nanotechnol. 2018, 9, 2855–2882, doi:10.3762/bjnano.9.266

Graphical Abstract
  • patterning as well as the inspection of the masks before and after etching was done in an FEI Nova Nano Lab 650 SEM. The lateral dimension of the structures was obtained from the SEM images, while the feature height was calculated from the profile of a Bruker Nanoscope V atomic force microscope (AFM). The
PDF
Album
Review
Published 14 Nov 2018

Biomimetic surface structures in steel fabricated with femtosecond laser pulses: influence of laser rescanning on morphology and wettability

  • Camilo Florian Baron,
  • Alexandros Mimidis,
  • Daniel Puerto,
  • Evangelos Skoulas,
  • Emmanuel Stratakis,
  • Javier Solis and
  • Jan Siegel

Beilstein J. Nanotechnol. 2018, 9, 2802–2812, doi:10.3762/bjnano.9.262

Graphical Abstract
  • surfaces were polished obtaining mirror-like quality with an average roughness Ra < 2 nm measured by an atomic force microscope (AFM, Agilent 5100 AFM/SPM in tapping mode). In order to avoid environmental oxidation by humidity, the samples were stored in a desiccator at 30% relative humidity. Before and
PDF
Album
Supp Info
Full Research Paper
Published 05 Nov 2018

Variation of the photoluminescence spectrum of InAs/GaAs heterostructures grown by ion-beam deposition

  • Alexander S. Pashchenko,
  • Leonid S. Lunin,
  • Eleonora M. Danilina and
  • Sergei N. Chebotarev

Beilstein J. Nanotechnol. 2018, 9, 2794–2801, doi:10.3762/bjnano.9.261

Graphical Abstract
  • monochromator entrance slit from the reflected harmonics of the exciting laser radiation was carried out by means a Y-1.4 optical filter (light yellow color). A study of the surface morphology of the grown heterostructures was carried out using a Solver HV atomic force microscope. The structural properties of
PDF
Album
Full Research Paper
Published 02 Nov 2018

Optimization of Mo/Cr bilayer back contacts for thin-film solar cells

  • Nima Khoshsirat,
  • Fawad Ali,
  • Vincent Tiing Tiong,
  • Mojtaba Amjadipour,
  • Hongxia Wang,
  • Mahnaz Shafiei and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2018, 9, 2700–2707, doi:10.3762/bjnano.9.252

Graphical Abstract
  • tapping mode NT-MDT Solver-Pro atomic force microscope (AFM). A KeithLink four-point probe system was used to measure the sheet resistivity of the films. A Cary 5000 UV–vis–NIR spectrophotometer was also used for the optical properties measurements. The adhesion of the Mo layer was tested through ultra
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2018

Au–Si plasmonic platforms: synthesis, structure and FDTD simulations

  • Anna Gapska,
  • Marcin Łapiński,
  • Paweł Syty,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2018, 9, 2599–2608, doi:10.3762/bjnano.9.241

Graphical Abstract
  • different temperatures (up to 600 °C) in air in a hot furnace. A scheme of the formation of the gold nanostructures is shown in Figure 1. To analyze the surface morphology of the samples, a FEI Quanta FEG 250 scanning electron microscope (SEM) operated at 10 kV and an atomic force microscope (AFM) Omicron
PDF
Album
Full Research Paper
Published 28 Sep 2018

Non-agglomerated silicon–organic nanoparticles and their nanocomplexes with oligonucleotides: synthesis and properties

  • Asya S. Levina,
  • Marina N. Repkova,
  • Nadezhda V. Shikina,
  • Zinfer R. Ismagilov,
  • Svetlana A. Yashnik,
  • Dmitrii V. Semenov,
  • Yulia I. Savinovskaya,
  • Natalia A. Mazurkova,
  • Inna A. Pyshnaya and
  • Valentina F. Zarytova

Beilstein J. Nanotechnol. 2018, 9, 2516–2525, doi:10.3762/bjnano.9.234

Graphical Abstract
  • microscope. The results are presented in Figure 3. Atomic force microscopy (AFM) was performed on a Solver P47 Bio atomic force microscope (NT-МDT, Russia) in a tapping mode. The aqueous solution of the Si–NH2·ODN(1) sample (10 µL, 0.16 µM, NH2/p = 10) was applied to a freshly cleaved mica area of 25–30 mm2
PDF
Album
Full Research Paper
Published 21 Sep 2018

Recent highlights in nanoscale and mesoscale friction

  • Andrea Vanossi,
  • Dirk Dietzel,
  • Andre Schirmeisen,
  • Ernst Meyer,
  • Rémy Pawlak,
  • Thilo Glatzel,
  • Marcin Kisiel,
  • Shigeki Kawai and
  • Nicola Manini

Beilstein J. Nanotechnol. 2018, 9, 1995–2014, doi:10.3762/bjnano.9.190

Graphical Abstract
  • ultimately responsible for the microscopic processes governing friction. Major advances in experimental techniques, including the development and widespread adoption of scanning microscopes and particularly the atomic force microscope (AFM) [1], accompanied by new theoretical concepts and models, have
PDF
Album
Review
Published 16 Jul 2018

Toward the use of CVD-grown MoS2 nanosheets as field-emission source

  • Geetanjali Deokar,
  • Nitul S. Rajput,
  • Junjie Li,
  • Francis Leonard Deepak,
  • Wei Ou-Yang,
  • Nicolas Reckinger,
  • Carla Bittencourt,
  • Jean-Francois Colomer and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2018, 9, 1686–1694, doi:10.3762/bjnano.9.160

Graphical Abstract
  • energy-dispersive spectroscopy (EDS) detector) operating at 200 kV for imaging and elemental characterization. Roughness and topography of the as-grown MoS2 NSs (before transfer) were examined by atomic force microscope (AFM). The AFM scans were recorded in resonant mode (AppNanoTM made cantilever with
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Closed polymer containers based on phenylboronic esters of resorcinarenes

  • Tatiana Yu. Sergeeva,
  • Rezeda K. Mukhitova,
  • Irek R. Nizameev,
  • Marsil K. Kadirov,
  • Polina D. Klypina,
  • Albina Y. Ziganshina and
  • Alexander I. Konovalov

Beilstein J. Nanotechnol. 2018, 9, 1594–1601, doi:10.3762/bjnano.9.151

Graphical Abstract
  • , reducing the pH value down to 3 results in the dissociation of p(SRA-B) and a rapid release of the dyes. A similar behavior was observed after the addition of glucose. Experimental Characterizations An atomic force microscope (AFM, Innova, Bruker) has been used to reveal the morphology of the nanoparticles
PDF
Album
Supp Info
Full Research Paper
Published 29 May 2018

Induced smectic phase in binary mixtures of twist-bend nematogens

  • Anamarija Knežević,
  • Irena Dokli,
  • Marin Sapunar,
  • Suzana Šegota,
  • Ute Baumeister and
  • Andreja Lesac

Beilstein J. Nanotechnol. 2018, 9, 1297–1307, doi:10.3762/bjnano.9.122

Graphical Abstract
  • of BB by atomic force microscope (AFM). Three mixtures containing 8, 18 and 27 mol % BB were investigated by AFM at 55 °C. For all three mixtures, the presence of the NTB phase at 55 °C, was confirmed by characteristic texture measurements and additionally verified by the XRD measurement performed on
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2018

Artifacts in time-resolved Kelvin probe force microscopy

  • Sascha Sadewasser,
  • Nicoleta Nicoara and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2018, 9, 1272–1281, doi:10.3762/bjnano.9.119

Graphical Abstract
  • the critical frequencies should be avoided, and (ii) an FFT analysis of the total electrostatic driving force is recommended to avoid misinterpretation of experimental data. Experimental Experiments were performed in an ultra-high vacuum atomic force microscope (Omicron VT-SPM) at a base pressure
PDF
Album
Full Research Paper
Published 24 Apr 2018

Atomistic modeling of tribological properties of Pd and Al nanoparticles on a graphene surface

  • Alexei Khomenko,
  • Miroslav Zakharov,
  • Denis Boyko and
  • Bo N. J. Persson

Beilstein J. Nanotechnol. 2018, 9, 1239–1246, doi:10.3762/bjnano.9.115

Graphical Abstract
  • considerable interest over the past four decades. This is due to the development of new experimental techniques, for example, atomic force microscope, dynamic friction force microscope, and owing to the continuous miniaturization of electronic and mechanical devices [1][2][3][4][5][6][7][8][9][10][11][12][13
PDF
Album
Full Research Paper
Published 19 Apr 2018

A novel copper precursor for electron beam induced deposition

  • Caspar Haverkamp,
  • George Sarau,
  • Mikhail N. Polyakov,
  • Ivo Utke,
  • Marcos V. Puydinger dos Santos,
  • Silke Christiansen and
  • Katja Höflich

Beilstein J. Nanotechnol. 2018, 9, 1220–1227, doi:10.3762/bjnano.9.113

Graphical Abstract
  • ratios of copper to oxygen and copper to carbon (d) Height of FEBID pads for different deposition times, written with a dwell time of 10 μs and a point distance of 3 nm. (e) Atomic force microscope line scans of the FEBID pad in (a) and (b). (a) Raman spectra of a FEBID pad, FEBID precursor and the
PDF
Album
Supp Info
Full Research Paper
Published 18 Apr 2018
Graphical Abstract
  • sonication step was repeated 4 times and then the samples were dried under nitrogen. Atomic force microscopy Samples were characterized using a model 5500 atomic force microscope (Keysight Technologies, Santa Rosa, CA). Images of samples were acquired using tapping-mode in ambient air. Silicon nitride tips
PDF
Album
Supp Info
Full Research Paper
Published 17 Apr 2018

A simple extension of the commonly used fitting equation for oscillatory structural forces in case of silica nanoparticle suspensions

  • Sebastian Schön and
  • Regine von Klitzing

Beilstein J. Nanotechnol. 2018, 9, 1095–1107, doi:10.3762/bjnano.9.101

Graphical Abstract
  • instruments, e.g., surface force apparatus (SFA) [2][4][5][6], thin film pressure balance (TFPB) [7][8][9][10][11], total internal reflection microscope (TIRM) [12][13][14][15][16], optical tweezers [17] or colloidal probe atomic force microscope (CP-AFM) [18][19][20][21]. Oscillatory forces have been
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2018

Scanning speed phenomenon in contact-resonance atomic force microscopy

  • Christopher C. Glover,
  • Jason P. Killgore and
  • Ryan C. Tung

Beilstein J. Nanotechnol. 2018, 9, 945–952, doi:10.3762/bjnano.9.87

Graphical Abstract
  • theory is proposed to explain this phenomenon, and model predictions are compared against the experimental data. Keywords: atomic force microscope; contact resonance; liquid; phenomenon; scan speed; Introduction With the rise in popularity of simultaneous topographic imaging and material property
PDF
Album
Full Research Paper
Published 21 Mar 2018

Tuning adhesion forces between functionalized gold colloidal nanoparticles and silicon AFM tips: role of ligands and capillary forces

  • Sven Oras,
  • Sergei Vlassov,
  • Marta Berholts,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2018, 9, 660–670, doi:10.3762/bjnano.9.61

Graphical Abstract
  • (–COOH), methyl (–CH3), methoxy (–OCH3) or thiol (–SH). The adhesion was measured by atomic force microscope (AFM) equipped with a PeakForce QNM module. The results were also compared to additional adhesion measurements performed on flat Au films functionalized with the same molecular thin film to
  • nanoparticles (NPs) and silicon AFM tip. Adhesion forces were mapped by atomic force microscope equipped with PeakForce QNM mode. It was shown that the adhesion response was significantly affected by the functional nature of the ligands, packing density of the thin molecular films grafted on the NPs, and by the
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2018

Optimisation of purification techniques for the preparation of large-volume aqueous solar nanoparticle inks for organic photovoltaics

  • Furqan Almyahi,
  • Thomas R. Andersen,
  • Nathan A. Cooling,
  • Natalie P. Holmes,
  • Matthew J. Griffith,
  • Krishna Feron,
  • Xiaojing Zhou,
  • Warwick J. Belcher and
  • Paul C. Dastoor

Beilstein J. Nanotechnol. 2018, 9, 649–659, doi:10.3762/bjnano.9.60

Graphical Abstract
  • force microscope (AFM) operated in AC mode was used to probe the nanoparticle films. Film samples for AFM were spin-coated on quartz glass substrates at 2000 rpm for 1 min. A Zeiss Sigma ZP field-emission scanning electron microscope (FESEM) was used to image the nanoparticle films (operating at
  • Attension Theta optical tensiometer (Bionic Scientific Co.) was used to record drop images and automatically analyse the drop shape (pendant drop method using OneAttension software) of ASNP inks and their filtrates in order to measure their surface tension. Film inspection: An Asylum Research Cypher atomic
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2018

Periodic structures on liquid-phase smectic A, nematic and isotropic free surfaces

  • Anna N. Bagdinova,
  • Evgeny I. Demikhov,
  • Nataliya G. Borisenko,
  • Sergei M. Tolokonnikov,
  • Gennadii V. Mishakov and
  • Andrei V. Sharkov

Beilstein J. Nanotechnol. 2018, 9, 342–352, doi:10.3762/bjnano.9.34

Graphical Abstract
  • atomic force microscope (AFM) and a scanning near-field optical microscope (SNOM). Images of the SmA phase free surface obtained by the polarized microscope and ISSA are in good correlation and show a well-known focal domain structure. The new periodic stripe structure was observed by scanning near-field
  • , such as interferometric surface structure analyzers (ISSAs, i.e., nanoprofilometer), atomic force microscope (AFM) [5][6][7][8] and a scanning near-field optical microscope (SNOM) [9][10] has been made. To study the liquid crystalline free boundary structures, common nanotechnology tools are used, for
PDF
Album
Full Research Paper
Published 30 Jan 2018

Anchoring of a dye precursor on NiO(001) studied by non-contact atomic force microscopy

  • Sara Freund,
  • Antoine Hinaut,
  • Nathalie Marinakis,
  • Edwin C. Constable,
  • Ernst Meyer,
  • Catherine E. Housecroft and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2018, 9, 242–249, doi:10.3762/bjnano.9.26

Graphical Abstract
  • were then annealed 1 h at 150 °C to facilitate the diffusion of the molecules on the substrate. Scanning probe microscopy The measurements were carried out with a custom-built atomic force microscope (AFM) in UHV and at room temperature. All AFM images were recorded in the non-contact mode (nc-AFM
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Nematic topological defects positionally controlled by geometry and external fields

  • Pavlo Kurioz,
  • Marko Kralj,
  • Bryce S. Murray,
  • Charles Rosenblatt and
  • Samo Kralj

Beilstein J. Nanotechnol. 2018, 9, 109–118, doi:10.3762/bjnano.9.13

Graphical Abstract
  • mimic geometric set-ups that could be realized experimentally using, for instance, the atomic force microscope (AFM) scribing method [17]. In a typical experimental set up one confines a nematic LC within a thin plane-parallel cell, where at least one (“master”) surface imposes anchoring conditions
PDF
Album
Full Research Paper
Published 10 Jan 2018
Other Beilstein-Institut Open Science Activities