Search results

Search for "biodistribution" in Full Text gives 48 result(s) in Beilstein Journal of Nanotechnology.

Surface characterization of nanoparticles using near-field light scattering

  • Eunsoo Yoo,
  • Yizhong Liu,
  • Chukwuazam A. Nwasike,
  • Sebastian R. Freeman,
  • Brian C. DiPaolo,
  • Bernardo Cordovez and
  • Amber L. Doiron

Beilstein J. Nanotechnol. 2018, 9, 1228–1238, doi:10.3762/bjnano.9.114

Graphical Abstract
  • ][28][29]. The properties of SPIOs vary considerably based on the particle size and surface coating, properties, which also greatly affect the particles’ in vivo biodistribution and effectiveness in biological applications [30][31]. During circulation, it is generally understood that larger
PDF
Album
Full Research Paper
Published 18 Apr 2018

A nanocomplex of C60 fullerene with cisplatin: design, characterization and toxicity

  • Svitlana Prylutska,
  • Svitlana Politenkova,
  • Kateryna Afanasieva,
  • Volodymyr Korolovych,
  • Kateryna Bogutska,
  • Andriy Sivolob,
  • Larysa Skivka,
  • Maxim Evstigneev,
  • Viktor Kostjukov,
  • Yuriy Prylutskyy and
  • Uwe Ritter

Beilstein J. Nanotechnol. 2017, 8, 1494–1501, doi:10.3762/bjnano.8.149

Graphical Abstract
  • concentration in biomedium, dose administration, type of cells and time of exposure. Since the biological action of C60 fullerene significantly differs from the action of traditional drugs by the mechanism of penetration inside cells and biodistribution [23][24][25][32][33][34][35], the conjugation of С60
  • of nanoparticles in solution is important not only for checking the quality of solution for study, but also to control the degree of aggregation which may influence their biodistribution and toxicity [47]. Figure 1 shows DLS data of C60FAS and C60+Cis mixture at room temperature. It is seen that
PDF
Album
Full Research Paper
Published 20 Jul 2017

Development of polycationic amphiphilic cyclodextrin nanoparticles for anticancer drug delivery

  • Gamze Varan,
  • Juan M. Benito,
  • Carmen Ortiz Mellet and
  • Erem Bilensoy

Beilstein J. Nanotechnol. 2017, 8, 1457–1468, doi:10.3762/bjnano.8.145

Graphical Abstract
  • several factors that influence the particle size, particle distribution, surface charge, homogeneity and shape of nanometer-sized drug delivery systems. These factors have a subsequent influence on the biodistribution and the fate of the nanomedicine in the body [27]. In this case, the formulation
  • ]. The prolonged circulation time for nanoparticles, t, is needed to escape from MPS uptake in order to reach the tumor tissue. The MPS is one of the most important factors in preventing the prolonged circulation, affecting the biodistribution of nanoparticles. In this way, more effective and safe
PDF
Album
Full Research Paper
Published 13 Jul 2017

Cationic PEGylated polycaprolactone nanoparticles carrying post-operation docetaxel for glioma treatment

  • Cem Varan and
  • Erem Bilensoy

Beilstein J. Nanotechnol. 2017, 8, 1446–1456, doi:10.3762/bjnano.8.144

Graphical Abstract
  • affect cellular uptake, interaction with biological membranes, absorption rate, biodistribution in the body, as well as the physical stability of the nanoparticles [50]. It is known that nanoparticles can escape from systemic circulation via fenestrations, which are small openings through the endothelial
PDF
Album
Full Research Paper
Published 12 Jul 2017

Needs and challenges for assessing the environmental impacts of engineered nanomaterials (ENMs)

  • Michelle Romero-Franco,
  • Hilary A. Godwin,
  • Muhammad Bilal and
  • Yoram Cohen

Beilstein J. Nanotechnol. 2017, 8, 989–1014, doi:10.3762/bjnano.8.101

Graphical Abstract
  • for multiple categories, assuming that the NOAEC for the ENM in STIS is ≥610 mg/m3. For ENMs of group 4, further sub-grouping is required according to the degree of mobility in air (dustiness) and in physiological fluids (dispersibility), as well as on the uptake, biopersistence, and biodistribution
  • , tissue, organ or organism as a proxy of pulmonary retention); uptake and biodistribution (e.g., evidence of alveolar uptake and subsequent distribution through the pulmonary system); and cellular (e.g., membrane damage including cationic phagolysosome damage, generation of reactive oxygen species (ROS
  • properties and those linked to the ENMs functionality in the environment, (e.g., surface reactivity, dissolution rate, and dispersibility), ii) intended use, release and exposure, iii) uptake, biodistribution and biopersistence, and iv) biophysical interactions and cellular effects [36] to assign non-soluble
PDF
Album
Supp Info
Review
Published 05 May 2017

Multiwalled carbon nanotube hybrids as MRI contrast agents

  • Nikodem Kuźnik and
  • Mateusz M. Tomczyk

Beilstein J. Nanotechnol. 2016, 7, 1086–1103, doi:10.3762/bjnano.7.102

Graphical Abstract
  • biocompatibility and thus biodistribution which is followed, finally, by surface modifications leading to amphiphilic or specifically targeted behavior. Moreover, their magnetic, electric and photoluminescence properties can be adjusted and exploited for desired modalities. There are visions on the application of
  • . Additionally, the Alamar Blue test was also used [32][37]. For administration by vein injection, hemolysis studies are also useful and give a general idea as to blood compatibility. Then, biodistribution and elimination sketch further the directions for the applications. An analysis of organs with an MRI
  • without any remarkable side effects after intramuscular injection of Gd-L1/MWCNT#Richard at a dose of 0.1 mM Gd/kg [16]. Biodistribution The desired effects of biodistribution are observed in MRI scanners. These are described in the section “Magnetic resonance imaging”. However, here a brief report on the
PDF
Album
Supp Info
Review
Published 27 Jul 2016

Surface coating affects behavior of metallic nanoparticles in a biological environment

  • Darija Domazet Jurašin,
  • Marija Ćurlin,
  • Ivona Capjak,
  • Tea Crnković,
  • Marija Lovrić,
  • Michal Babič,
  • Daniel Horák,
  • Ivana Vinković Vrček and
  • Srećko Gajović

Beilstein J. Nanotechnol. 2016, 7, 246–262, doi:10.3762/bjnano.7.23

Graphical Abstract
  • media like dissolution, adsorption, binding, and aggregation, all influencing biological impacts by affecting reactive oxygen species generation, cellular uptake and NP biodistribution [15][16][17][18]. Metallic NPs usually aggregate in media with high electrolyte content that correspond to biological
  • ][38]. The nature and the concentration of these proteins not only determine the behavior and biological identity of the NPs, but consequently biouptake, biodistribution and possible unwanted biological side effects [39][40][41]. It has already been shown that the size of the NP correlates with the
PDF
Album
Full Research Paper
Published 15 Feb 2016

A facile method for the preparation of bifunctional Mn:ZnS/ZnS/Fe3O4 magnetic and fluorescent nanocrystals

  • Houcine Labiadh,
  • Tahar Ben Chaabane,
  • Romain Sibille,
  • Lavinia Balan and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2015, 6, 1743–1751, doi:10.3762/bjnano.6.178

Graphical Abstract
  • properties allow nanoparticles to be guided with a magnetic force both in vivo and in vitro and provide detailed information on their biodistribution using a fluorescence microscope [15][16][17]. Such bifunctional nanoparticles would enable simultaneous biolabelling/imaging and cell sorting/separation. Over
PDF
Album
Full Research Paper
Published 17 Aug 2015

The eNanoMapper database for nanomaterial safety information

  • Nina Jeliazkova,
  • Charalampos Chomenidis,
  • Philip Doganis,
  • Bengt Fadeel,
  • Roland Grafström,
  • Barry Hardy,
  • Janna Hastings,
  • Markus Hegi,
  • Vedrin Jeliazkov,
  • Nikolay Kochev,
  • Pekka Kohonen,
  • Cristian R. Munteanu,
  • Haralambos Sarimveis,
  • Bart Smeets,
  • Pantelis Sopasakis,
  • Georgia Tsiliki,
  • David Vorgrimmler and
  • Egon Willighagen

Beilstein J. Nanotechnol. 2015, 6, 1609–1634, doi:10.3762/bjnano.6.165

Graphical Abstract
  • . Among the factors in play in protein corona, biological interaction was chosen to be represented by cell association because of its relevance to biodistribution, inflammatory response potential, and in vivo toxicity. The eNanoMapper prototype described in this paper is able to capture this protein
PDF
Album
Supp Info
Full Research Paper
Published 27 Jul 2015

Influence of gold, silver and gold–silver alloy nanoparticles on germ cell function and embryo development

  • Ulrike Taylor,
  • Daniela Tiedemann,
  • Christoph Rehbock,
  • Wilfried A. Kues,
  • Stephan Barcikowski and
  • Detlef Rath

Beilstein J. Nanotechnol. 2015, 6, 651–664, doi:10.3762/bjnano.6.66

Graphical Abstract
  • showing a dose-dependent response towards protein (BSA) coated gold–silver alloy and silver nanoparticles leading up to complete arrest of maturation. Recent biodistribution studies confirmed that nanoparticles gain access to the ovaries and also penetrate the blood–testis and placental barrier. Thus, the
  • – exposure and biodistribution Exposure to man-made nanosized particles is not a recent event. As diesel fumes or in the form of air-borne particles released during welding, humans have been unintentially confronted with such materials for several decades. However, in the past twenty years technology has
  • <0.1% for AgNP [28] of the given dose. Once nanoparticles entered the body, the biodistribution depends on factors like particle size [31][32] and surface functionalization [33]. No clear trends have been established yet as to how those factors determine the biodistribution of the particles and further
PDF
Album
Video
Full Research Paper
Published 05 Mar 2015

Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

  • Shanka Walia and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2015, 6, 546–558, doi:10.3762/bjnano.6.57

Graphical Abstract
  • nanocomposites which in turn confirmed the low cell toxicity level of the prepared nanocomposites. The biodistribution studies of such nanocomposites in mice showed that these were mainly located in lung, liver and spleen without any trace in the brain tissues. These results suggested that the prepared
PDF
Album
Review
Published 24 Feb 2015

Hematopoietic and mesenchymal stem cells: polymeric nanoparticle uptake and lineage differentiation

  • Ivonne Brüstle,
  • Thomas Simmet,
  • Gerd Ulrich Nienhaus,
  • Katharina Landfester and
  • Volker Mailänder

Beilstein J. Nanotechnol. 2015, 6, 383–395, doi:10.3762/bjnano.6.38

Graphical Abstract
  • combination of nanoparticles with these two stem cell types derived from the bone marrow is very promising not only for labelling to monitor biodistribution and migration of stem cells but also to establish the “pharmacokinetics” of such cellular therapeutics. Furthermore, such nanoparticles can be
PDF
Album
Supp Info
Full Research Paper
Published 05 Feb 2015

Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques

  • Anja Ostrowski,
  • Daniel Nordmeyer,
  • Alexander Boreham,
  • Cornelia Holzhausen,
  • Lars Mundhenk,
  • Christina Graf,
  • Martina C. Meinke,
  • Annika Vogt,
  • Sabrina Hadam,
  • Jürgen Lademann,
  • Eckart Rühl,
  • Ulrike Alexiev and
  • Achim D. Gruber

Beilstein J. Nanotechnol. 2015, 6, 263–280, doi:10.3762/bjnano.6.25

Graphical Abstract
  • activation statuses, and apoptotic or degenerative changes [74]. In addition, fluorescence microscopy has been widely used in studies on the biodistribution of nanoparticles [28][48][75][76][77][78]. For fluorescence microscopic detection, NP are usually labeled with fluorescent dyes, such as fluorescein
  • , for biodistribution and subcellular localization studies of fluorescently labeled NP, the spectral imaging and linear unmixing technique may become valuable in future work on the biodistribution of NP in the context of entire tissues. So far, one study reported the in vivo distribution of QD following
  • . A single technique is often insufficient to address all questions regarding the distribution of NP within the body, the cellular uptake, and the target cells and organs. But a combination of different detection methods may provide reliable information on the NP biodistribution and associated
PDF
Album
Review
Published 23 Jan 2015

The distribution and degradation of radiolabeled superparamagnetic iron oxide nanoparticles and quantum dots in mice

  • Denise Bargheer,
  • Artur Giemsa,
  • Barbara Freund,
  • Markus Heine,
  • Christian Waurisch,
  • Gordon M. Stachowski,
  • Stephen G. Hickey,
  • Alexander Eychmüller,
  • Jörg Heeren and
  • Peter Nielsen

Beilstein J. Nanotechnol. 2015, 6, 111–123, doi:10.3762/bjnano.6.11

Graphical Abstract
  • /CdS/ZnS-Qdots in the liver. Keywords: biodistribution; chromium(III); 51Cr; quantum dots; SPIOs; zinc metabolism; 65Zn; Introduction Quantum dots (Qdots) are semiconductor nanocrystals (2–100 nm in diameter) that combine a strong, size-tunable photoluminescence with robust photostability, which
  • isotopes and basic parameters regarding their biodistribution and degradation were studied. It was previously shown that oleic acid-stabilized, hydrophobic, monodisperse, iron oxide cores can easily incorporate water-free 59FeCl3 [24]. This results in the stable labeling of the core and allows a quasi “on
  • them water soluble. This resulted in similar nanoparticles (comparable size, surface chemistry and charge), despite the completely different core material. This was proven when the biodistribution was compared using fluorescent Qdots and intravital microscopy in mice or MRI measurements in mice and TEM
PDF
Album
Full Research Paper
Published 09 Jan 2015

Synthesis of boron nitride nanotubes and their applications

  • Saban Kalay,
  • Zehra Yilmaz,
  • Ozlem Sen,
  • Melis Emanet,
  • Emine Kazanc and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2015, 6, 84–102, doi:10.3762/bjnano.6.9

Graphical Abstract
  • structures have potential in cancer therapy [85]. To investigate in vivo biodistribution of the BNNTs, they were functionalized with GC then radiolabeled with 99mTc [86]. After 30 min of injection into mice, the BNNTs were in the systemic circulation and accumulated in the liver, spleen and intestinal
PDF
Album
Review
Published 08 Jan 2015

The fate of a designed protein corona on nanoparticles in vitro and in vivo

  • Denise Bargheer,
  • Julius Nielsen,
  • Gabriella Gébel,
  • Markus Heine,
  • Sunhild C. Salmen,
  • Roland Stauber,
  • Horst Weller,
  • Joerg Heeren and
  • Peter Nielsen

Beilstein J. Nanotechnol. 2015, 6, 36–46, doi:10.3762/bjnano.6.5

Graphical Abstract
  • biodistribution. Our intention was less to add precise binding data on another SPIO example to the literature but more to develop a technique that would allow studying the influence of a preformed test corona also in vivo. This gives reduced amount of information on exchanging parameters of the protein corona but
  • we can follow and quantify the consequences of a protein corona formation on the biodistribution of the particle and the test protein directly in vivo, a topic that is most relevant for any nanomedical application in the future. We first looked in an in vitro experiment for the equilibrium binding of
  • charged SPIOs had no preformed transferrin corona but must have been also coated by plasma proteins before liver uptake took place implicating a similar biodistribution. This confirms the stability of a corona in a recent study by Wang et al. using a cell culture model [22]. Conclusion This pilot study
PDF
Album
Full Research Paper
Published 06 Jan 2015

Functionalized polystyrene nanoparticles as a platform for studying bio–nano interactions

  • Cornelia Loos,
  • Tatiana Syrovets,
  • Anna Musyanovych,
  • Volker Mailänder,
  • Katharina Landfester,
  • G. Ulrich Nienhaus and
  • Thomas Simmet

Beilstein J. Nanotechnol. 2014, 5, 2403–2412, doi:10.3762/bjnano.5.250

Graphical Abstract
  • biodistribution. Polystyrene does not degrade in the cellular environment and exhibits no short-term cytotoxicity. Because polystyrene nanoparticles can be easily synthesized in a wide range of sizes with distinct surface functionalizations, they are perfectly suited as model particles to study the effects of the
PDF
Album
Review
Published 15 Dec 2014

The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions

  • Christoph Bantz,
  • Olga Koshkina,
  • Thomas Lang,
  • Hans-Joachim Galla,
  • C. James Kirkpatrick,
  • Roland H. Stauber and
  • Michael Maskos

Beilstein J. Nanotechnol. 2014, 5, 1774–1786, doi:10.3762/bjnano.5.188

Graphical Abstract
  • furthermore induce agglomeration. This affects particle characteristics especially with respect to particle size and size distribution, which can influence the biodistribution, circulation time, intracellular trafficking, clearance or uptake mechanism [17]. Within this paper, we present the size
PDF
Album
Full Research Paper
Published 15 Oct 2014

The cell-type specific uptake of polymer-coated or micelle-embedded QDs and SPIOs does not provoke an acute pro-inflammatory response in the liver

  • Markus Heine,
  • Alexander Bartelt,
  • Oliver T. Bruns,
  • Denise Bargheer,
  • Artur Giemsa,
  • Barbara Freund,
  • Ludger Scheja,
  • Christian Waurisch,
  • Alexander Eychmüller,
  • Rudolph Reimer,
  • Horst Weller,
  • Peter Nielsen and
  • Joerg Heeren

Beilstein J. Nanotechnol. 2014, 5, 1432–1440, doi:10.3762/bjnano.5.155

Graphical Abstract
  • cadmium-induced toxicity were observed. Other studies focus on the quantification of cadmium as tracer for injected nanocrystals. The laboratory of Lin investigated the biodistribution of QDs in mice over four months [10]. In this study, a slow redistribution of the chemical components from peripheral
PDF
Album
Full Research Paper
Published 02 Sep 2014

The protein corona protects against size- and dose-dependent toxicity of amorphous silica nanoparticles

  • Dominic Docter,
  • Christoph Bantz,
  • Dana Westmeier,
  • Hajo J. Galla,
  • Qiangbin Wang,
  • James C. Kirkpatrick,
  • Peter Nielsen,
  • Michael Maskos and
  • Roland H. Stauber

Beilstein J. Nanotechnol. 2014, 5, 1380–1392, doi:10.3762/bjnano.5.151

Graphical Abstract
  • modulate nanoparticle-induced processes such as opsonization which have direct consequences on the mode of interaction with cells, the efficacy of cellular NP uptake and thus, the organ targeting, biodistribution, and circulatio time of NP in vertebrates and non-vertebrates [22]. Our study indicates that
PDF
Album
Full Research Paper
Published 27 Aug 2014

Optimizing the synthesis of CdS/ZnS core/shell semiconductor nanocrystals for bioimaging applications

  • Li-wei Liu,
  • Si-yi Hu,
  • Ying Pan,
  • Jia-qi Zhang,
  • Yue-shu Feng and
  • Xi-he Zhang

Beilstein J. Nanotechnol. 2014, 5, 919–926, doi:10.3762/bjnano.5.105

Graphical Abstract
  • in vivo imaging indicated the great potential of 470 nm laser excitation for autofluorescence-free QDs-based animal imaging. Further studies involving a systemic administration of the nanoparticles via the intravenous route and their subsequent studies of the biodistribution are required to gather
PDF
Album
Full Research Paper
Published 27 Jun 2014

Near-infrared dye loaded polymeric nanoparticles for cancer imaging and therapy and cellular response after laser-induced heating

  • Tingjun Lei,
  • Alicia Fernandez-Fernandez,
  • Romila Manchanda,
  • Yen-Chih Huang and
  • Anthony J. McGoron

Beilstein J. Nanotechnol. 2014, 5, 313–322, doi:10.3762/bjnano.5.35

Graphical Abstract
  • pharmacokinetics and biodistribution of IR820-PGMD NPs [24]. The present manuscript concentrates primarily on the in vitro response of cancer cells after hyperthermia. Therefore, this paper focuses not only on the cancer imaging and therapy capabilities of IR820-PGMD NPs, but also on exploring the cellular
  • Figure 6B, respectively. These images show that the biodistribution of IR820-PGMD NPs is initially very similar to free IR820, as both were processed rapidly through hepatobiliary excretion and start to accumulate in the liver within the first 15 min. After 24 h, it seems that both free dye and NPs were
  • plasma concentration 24 h after injection compared to free IR820. In addition, our biodistribution studies showed that kidney IR820 dye content was lower in NP form than in free IR820 form, which means less IR820 was excreted through the renal system when in NP form. This is consistent with kidney
PDF
Album
Supp Info
Full Research Paper
Published 18 Mar 2014

Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol

  • Shadab Ali Khan,
  • Sanjay Gambhir and
  • Absar Ahmad

Beilstein J. Nanotechnol. 2014, 5, 249–257, doi:10.3762/bjnano.5.27

Graphical Abstract
  • treatment of cancer, we first synthesized extracellular, protein-capped, highly stable and well-dispersed gadolinium oxide (Gd2O3) nanoparticles by using thermophilic fungus Humicola sp. The biodistribution of the nanoparticles in rats was checked by radiolabelling with Tc-99m. Finally, these nanoparticles
  • ) and X-ray photoemission spectroscopy (XPS). The Gd2O3–taxol bioconjugate was confirmed by UV–vis spectroscopy and fluorescence microscopy and was purified by using high performance liquid chromatography (HPLC). Keywords: bioconjugation; biodistribution; gadolinium oxide; humicola sp; transmission
  • spectra was performed by using the Shirley algorithm. The chemically distinct species were resolved by a nonlinear least square fitting procedure. Radiolabelling and biodistribution studies Radiolabelling of gadolinium oxide (Gd2O3) nanoparticles with Tc-99m To fabricate Tc-99m–Gd2O3 nanoparticles, 10 mg
PDF
Album
Full Research Paper
Published 07 Mar 2014
Other Beilstein-Institut Open Science Activities