Search results

Search for "biofilm" in Full Text gives 20 result(s) in Beilstein Journal of Nanotechnology.

Berberine-loaded polylactic acid nanofiber scaffold as a drug delivery system: The relationship between chemical characteristics, drug-release behavior, and antibacterial efficiency

  • Le Thi Le,
  • Hue Thi Nguyen,
  • Liem Thanh Nguyen,
  • Huy Quang Tran and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2024, 15, 71–82, doi:10.3762/bjnano.15.7

Graphical Abstract
  • mechanism of BBR against a standard strain Staphylococcus aureus, whereby BBR inhibits the synthesis of the cell wall and an aromatic amino acid induces oxidative damage and decreases stress resistance. Besides, BBR was found to inhibit MRSA biofilm formation with the concentration in the range of 1–64 mg/L
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2024

Dry under water: air retaining properties of large-scale elastomer foils covered with mushroom-shaped surface microstructures

  • Matthias Mail,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Wilhelm Barthlott,
  • Stanislav N. Gorb and
  • Lars Heepe

Beilstein J. Nanotechnol. 2022, 13, 1370–1379, doi:10.3762/bjnano.13.113

Graphical Abstract
  • Salvinia-like biomimetic surfaces are permanent over years, like in many air–water interfaces a neustonic microbial biofilm (“Bacterioneuston”), usually associated with fungi, becomes established under non-sterile and non-turbulent conditions rather fast. On the MSM already after one month the air–water
  • they have been submerged for one month in tap water. a) A microbial neustonic on the MSM. The biofilm covers large areas of the MSM surface. b) Already after one month the tips of some of the MSM are contaminated by bacteria and connected by straight filaments, which are most probably fungal hyphae
PDF
Album
Full Research Paper
Published 21 Nov 2022

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
  • urgently requires new material concepts for preventing microbial infestation and biofilm formation. Thus, materials exhibiting microbial repellence or antimicrobial behaviour to reduce inflammation, while selectively enhancing regeneration in host tissues are of utmost interest. In this context, protein
  • . Biofouling can be defined as the undesired attachment and growth of life on artificial surfaces [49]. One general strategy to inhibit biofilm formation and microbial colonialization is microbial repellence since it targets a direct inhibition of bacterial adherence on a surface. Various approaches can be
  • cells utilize a variety of extracellular structures such as flagella, pili, fimbriae, and curli fibres, as well as outer membrane proteins to attach to almost every surface [50][76]. During the reversible attachment phase of bacterial biofilm formation, surface pre-conditioning occurs due to soluble
PDF
Album
Review
Published 08 Sep 2022

Antibacterial activity of a berberine nanoformulation

  • Hue Thi Nguyen,
  • Tuyet Nhung Pham,
  • Anh-Tuan Le,
  • Nguyen Thanh Thuy,
  • Tran Quang Huy and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2022, 13, 641–652, doi:10.3762/bjnano.13.56

Graphical Abstract
  • bacterial cell membrane and inhibiting the synthesis of proteins and DNA [15]. Chu et al. [16] reported that BBR showed no antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) in the range of concentrations from 1 to 64 µg/mL. However, inhibition of MRSA biofilm formation was
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • scaffold by mixing them into the scaffold structure. Once incorporated, they provide new properties and possibly improve physical characteristics. In a study of in vitro and in vivo MSC chondrogenesis [26], the researchers encapsulated TGF-β3 in alginate microspheres coated with biofilm and subsequently
PDF
Album
Review
Published 11 Apr 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • can grow and reproduce inside the body. Staphylococcus is the most common bacterial species in this case, and its ability to adhere to the implant materials and promote the formation of a biofilm is the most critical feature of its pathogenicity. Once the biofilm is formed, even routine antibiotic
  • biofilm inhibition and treatment [88][89][90]. The size of the nps impacts the diffusion into the extracellular polymeric substance matrix, with diameters up to 130 nm demonstrating deep penetration into biofilms. Moreover, positively charged nps exert greater biofilm penetration over anionic or uncharged
  • equivalents. TiO2 nps have been presented as an antifungal biofilm agent against Candida albicans on the surfaces of biomedical implants [91]. In this context, Dworniczek et al. reported that europium-doped and sulfated anatase TiO2 results in the effective photocatalytic inactivation of Enterococcus biofilms
PDF
Album
Review
Published 14 Feb 2022

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • antibacterial effect indicating its potential to restrict biofilm formation. Carrageenans are also being explored regarding the synthesis of polymeric nanoparticles complexed with other polymers such as chitosan and tripolyphosphate. The use of carrageenan is not only limited to biological applications, it also
PDF
Album
Review
Published 18 Aug 2021

Recent progress in actuation technologies of micro/nanorobots

  • Ke Xu and
  • Bing Liu

Beilstein J. Nanotechnol. 2021, 12, 756–765, doi:10.3762/bjnano.12.59

Graphical Abstract
  • reactive substances formed on the surface of the biofilm. The robot is composed of biocompatible materials, and the internal structure is decorated with platinum nanoparticles, which can decompose H2O2 fuel into bubbles. The characteristics of the tubular microrobot are illustrated in Figure 2. The bubbles
PDF
Album
Review
Published 20 Jul 2021

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • through the biofilm and attack bacteria on different targets [27]. Studies have verified the effectiveness of AgNPs against different pathogens resistant to drugs of clinical importance, including Pseudomonas aeruginosa, ampicillin-resistant Escherichia coli O157:H7, and erythromycin-resistant
  • has about 0.00006% of the atoms on the surface, while a cube with 10 nm of size has approximately 60% of the atoms on the surface. Therefore, many of the physical properties of AgNPs, such as their effectiveness against bacteria, viruses, and biofilm permeability are related to the size of the
PDF
Album
Supp Info
Review
Published 14 May 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
  • and the morphology is reasonably well maintained. However, the surface is less well preserved. Figure 4 shows a Pseudomonas putida biofilm imaged using HIM [69]. One image shows the biofilm prepared using ethanol dehydration followed by HMDS drying (Figure 4A). The other image shows the biofilm
  • prepared with an ionic liquid (Figure 4B). Though the HMDS-prepared sample clearly shows a high density of individual bacteria, the ionic liquid treatment appears to have maintained the EPS and is perhaps a better representation of the true biofilm. Nevertheless, this study suggests that multiple
  • rhizobacterial biofilm on the root under dryland and irrigation conditions was studied by fluorescent microscopy and SEM on a larger scale. HIM was used to visualise the nanostructure of the bacterial colonies; however, no micrographs with sub-20 nm resolution are shown. The second publication is an extended
PDF
Album
Review
Published 04 Jan 2021

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • (e.g., medical devices or implants) they can develop into a biofilm, thereby becoming more resistant to conventional biocides and disinfectants. Nanoparticles can be used as an antibacterial agent in medical instruments or as a protective coating in implantable devices. In particular, attention is
  • aggregates protected by self-generated extracellular polymeric substances [1][4]. Biofilms are resistant to mechanical abrasion and drug treatments, including antibiotics. The detachment of a single bacterial cell or biofilm fragments can result in systemic chronic infections [5]. As a consequence, when a
  • biofilm forms at the surface of prostheses, catheters or other implantable devices, surgical removal is the only possible solution to prevent the infection from spreading [6]. Aside from the hospital environment, the bacterial contamination and the biofilm formation also affect the food packaging, textile
PDF
Album
Review
Published 31 Jul 2020

Silver-decorated gel-shell nanobeads: physicochemical characterization and evaluation of antibacterial properties

  • Marta Bartel,
  • Katarzyna Markowska,
  • Marcin Strawski,
  • Krystyna Wolska and
  • Maciej Mazur

Beilstein J. Nanotechnol. 2020, 11, 620–630, doi:10.3762/bjnano.11.49

Graphical Abstract
  • whole structure. The silver-decorated nanobeads appear to be a promising material with considerable antimicrobial activity and were tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus epidermidis. The determined minimum inhibitory (MIC) and minimum biofilm
  • inhibitory (MBIC) concentrations are comparable to those of non-incorporated silver nanoparticles. Keywords: Escherichia coli; gel-shell particles; minimum biofilm inhibitory concentration (MBIC); minimum inhibitory concentration (MIC); nanocomposites; Pseudomonas aeruginosa; silver nanoparticles
  • the gram-positive S. aureus. Biofilm formation is a strategy of microorganisms to avoid unfavorable environmental conditions. Due to high resistance of these microbial populations to commonly used therapeutics, biofilms are a substantial source of antibiotic failure and persistent infections [45]. The
PDF
Album
Full Research Paper
Published 14 Apr 2020

Facile biogenic fabrication of hydroxyapatite nanorods using cuttlefish bone and their bactericidal and biocompatibility study

  • Satheeshkumar Balu,
  • Manisha Vidyavathy Sundaradoss,
  • Swetha Andra and
  • Jaison Jeevanandam

Beilstein J. Nanotechnol. 2020, 11, 285–295, doi:10.3762/bjnano.11.21

Graphical Abstract
  • grow rapidly on Hap, due to their bioactive property and the presence of calcium and phosphate that act as nutrients for their growth. The formation of a biofilm (bacterial colonies) on Hap is one of the major causes of implant failure, therefore it is essential to study their bactericidal property. It
PDF
Album
Full Research Paper
Published 04 Feb 2020

Fabrication of photothermally active poly(vinyl alcohol) films with gold nanostars for antibacterial applications

  • Mykola Borzenkov,
  • Maria Moros,
  • Claudia Tortiglione,
  • Serena Bertoldi,
  • Nicola Contessi,
  • Silvia Faré,
  • Angelo Taglietti,
  • Agnese D’Agostino,
  • Piersandro Pallavicini,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2018, 9, 2040–2048, doi:10.3762/bjnano.9.193

Graphical Abstract
  • from the surfaces where they formed [8]. Silver nanoparticles prevent biofilm formation but with a controversial results – Ag nanoparticles are effective towards Gram-negative bacterial strains but much less so towards Gram-positive [8][23]. There is a strong need for novel lightweight antibacterial
  • given to the optimization of GNS loading into the films, aiming to increasing the efficiency in bacteria and biofilm eradication under low laser power. In addition, photothermal-triggered controlled release of antibacterial compounds as a synergic effect will be also investigated. These strategies will
PDF
Album
Supp Info
Full Research Paper
Published 23 Jul 2018

BN/Ag hybrid nanomaterials with petal-like surfaces as catalysts and antibacterial agents

  • Konstantin L. Firestein,
  • Denis V. Leybo,
  • Alexander E. Steinman,
  • Andrey M. Kovalskii,
  • Andrei T. Matveev,
  • Anton M. Manakhov,
  • Irina V. Sukhorukova,
  • Pavel V. Slukin,
  • Nadezda K. Fursova,
  • Sergey G. Ignatov,
  • Dmitri V. Golberg and
  • Dmitry V. Shtansky

Beilstein J. Nanotechnol. 2018, 9, 250–261, doi:10.3762/bjnano.9.27

Graphical Abstract
  •  9d, lines 3 and 4), whereas control and BN NP samples did not show any antibacterial effect (Figure 9d, curves 1 and 2). In order to estimate the antibacterial activity of the BN/Ag HNMs at the early stage of biofilm formation, the coupon method was used. The obtained results show that, unlike the
  • control sample, there is no biofilm formation on the surface of CVD and UV BN/Ag HNMs (Figure 9e). Thus, our data demonstrate that both types of BN/Ag HNMs possess a strong antibacterial effect against E. coli bacteria and inhibit the early stage of biofilm formation. Despite a broad spectrum of
  • counted. In order to estimate the antibacterial activity of the BN/Ag HNMs at the early stage of biofilm formation, the coupon method was used. Three standard plastic coupons, 300 mm2, were immersed into E. coli bacterial culture together with the BN/Ag HNMs at 37 °C for 8 h. After the tests, the coupons
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Bi-layer sandwich film for antibacterial catheters

  • Gerhard Franz,
  • Florian Schamberger,
  • Hamideh Heidari Zare,
  • Sara Felicitas Bröskamp and
  • Dieter Jocham

Beilstein J. Nanotechnol. 2017, 8, 1982–2001, doi:10.3762/bjnano.8.199

Graphical Abstract
  • of bacteria can be fought relatively easily. Once the invasion is permitted and the small islands have grown to a highly structured biofilm with a protecting polysaccharide, the prospects for an effective attack are severely diminished [7]. Because catheterization was a giant step towards a better
PDF
Album
Full Research Paper
Published 22 Sep 2017

Viability and proliferation of endothelial cells upon exposure to GaN nanoparticles

  • Tudor Braniste,
  • Ion Tiginyanu,
  • Tibor Horvath,
  • Simion Raevschi,
  • Serghei Cebotari,
  • Marco Lux,
  • Axel Haverich and
  • Andres Hilfiker

Beilstein J. Nanotechnol. 2016, 7, 1330–1337, doi:10.3762/bjnano.7.124

Graphical Abstract
  • functionalization is important to prevent biofilm formation on implants or prostheses and can improve the endothelialization process for other applications. It was recently shown that GaN nanoparticles could inhibit biofilm formation, being most effective against Gram-negative bacterial species [26]. Endothelial
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2016

Mammalian cell growth on gold nanoparticle-decorated substrates is influenced by the nanoparticle coating

  • Christina Rosman,
  • Sebastien Pierrat,
  • Marco Tarantola,
  • David Schneider,
  • Eva Sunnick,
  • Andreas Janshoff and
  • Carsten Sönnichsen

Beilstein J. Nanotechnol. 2014, 5, 2479–2488, doi:10.3762/bjnano.5.257

Graphical Abstract
  • (i.e., the marking of cell movement by the voids created on a nanoparticle carpet) was used already in 1977 to visualize cell migration [15]. Because nanoparticles are so prevalently used to coat surfaces (for instance, to create biofilm resistance on implants [16], to enhance stability or to create a
PDF
Album
Supp Info
Full Research Paper
Published 24 Dec 2014

Aquatic versus terrestrial attachment: Water makes a difference

  • Petra Ditsche and
  • Adam P. Summers

Beilstein J. Nanotechnol. 2014, 5, 2424–2439, doi:10.3762/bjnano.5.252

Graphical Abstract
  • pressure difference at vacuum conditions can be ameliorated under water, due to the increasing pressure with water depth. Keywords: adhesion; biofilm; friction; hooks; suction; Introduction Attachment in animals, plants and microorganisms serves a variety of functions: the interconnection of body parts
  • considered for aquatic systems. While most terrestrial animals make contact directly with the substrate, in aquatic environments the substrates are usually covered with a biofilm and fouling organisms (Figure 3). Biofilms play not only an important role in stimulating or inhibiting the settlement of fouling
  • , and fluid properties, implies they will be useful. A further complication in water bears mention: The biofilm of fouled surfaces has a high effective viscosity and is also viscoelastic [26]. It is likely that an empirical understanding of viscous adhesion of animals to biofilms will have to be
PDF
Album
Review
Published 17 Dec 2014

Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique

  • Alina Maria Holban,
  • Valentina Grumezescu,
  • Alexandru Mihai Grumezescu,
  • Bogdan Ştefan Vasile,
  • Roxana Truşcă,
  • Rodica Cristescu,
  • Gabriel Socol and
  • Florin Iordache

Beilstein J. Nanotechnol. 2014, 5, 872–880, doi:10.3762/bjnano.5.99

Graphical Abstract
  • -CS-Fe3O4@EUG nanospheres diameter sizes range between 20 and 80 nm. These MAPLE-deposited coatings acted as bioactive nanosystems and exhibited a great antimicrobial effect by impairing the adherence and biofilm formation of Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa
  • in combating microbial infections both in vitro and in vivo [5][6]. In the past years a series of papers have been published in prestigious journals highlighting the relevance of magnetite nanostructures in preventing the development of microbial biofilm and the opportunity of utilizing these
  • driven by the Axio-Vision 4.6 (Carl Zeiss, Germany) software. In vitro microbial biofilm development Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 27853 strains were purchased from American Type Cell Collection (ATCC, USA). For the biofilm assays, fresh bacteria cultures were obtained
PDF
Album
Full Research Paper
Published 18 Jun 2014
Other Beilstein-Institut Open Science Activities