Search results

Search for "bright-field" in Full Text gives 125 result(s) in Beilstein Journal of Nanotechnology.

Imaging the intracellular degradation of biodegradable polymer nanoparticles

  • Anne-Kathrin Barthel,
  • Martin Dass,
  • Melanie Dröge,
  • Jens-Michael Cramer,
  • Daniela Baumann,
  • Markus Urban,
  • Katharina Landfester,
  • Volker Mailänder and
  • Ingo Lieberwirth

Beilstein J. Nanotechnol. 2014, 5, 1905–1917, doi:10.3762/bjnano.5.201

Graphical Abstract
  • membrane; Green: PLLA nanoparticles. TEM bright field micrographs of a dispersion of magnetite-decorated PLLA nanoparticles prepared by drop casting and subsequent carbon evaporation (A) and by high pressure freezing (HPF) followed by freeze substitution and microtomy (B). The inset of B shows the
  • particles. The formation process in case of the PLLA–magnetite particles is slightly retarded, indicating that an additional PLLA layer is covering the magnetite. TEM bright field micrograph showing an overview (A) of a thin section of a MSC after 24 h of incubation with magnetite-decorated PLLA
  • nanoparticles. Enlargement of endosomes, which contain extracellular material such as magnetite or PLLA are shown in (B–E). TEM bright field micrograph of a MSC after 24 h of incubation. The appearance of the PLLA containing endosome is quite different from those presented in Figure 4. Large endosomes filled
PDF
Album
Full Research Paper
Published 29 Oct 2014

Cathode lens spectromicroscopy: methodology and applications

  • T. O. Menteş,
  • G. Zamborlini,
  • A. Sala and
  • A. Locatelli

Beilstein J. Nanotechnol. 2014, 5, 1873–1886, doi:10.3762/bjnano.5.198

Graphical Abstract
  • aperture). The selection of the specular beam (zero-order diffraction) is commonly referred to as the bright field mode. An illustration of the intensity variations resulting from diffraction contrast is shown in Figure 2. The three curves belong to clean W(110), to W(110) covered with a pseudomorphic Fe
  • aperture on the desired beam. The resulting real space image gives a direct map of the corresponding structure. No intensity is seen elsewhere, except that originating from the diffuse background of the primary diffracted beam. The lateral resolution is comparable to that of the bright field mode, and the
  • acquisition times, although slightly longer than the bright field operation, can be a few seconds to minutes depending on the intensity in the selected diffraction order. Due to the short inelastic mean free path (IMFP) at low electron energies below a few hundred electronvolts [14], LEEM is a surface
PDF
Album
Review
Published 27 Oct 2014

Formation of CuxAu1−x phases by cold homogenization of Au/Cu nanocrystalline thin films

  • Alona Tynkova,
  • Gabor L. Katona,
  • Gabor A. Langer,
  • Sergey I. Sidorenko,
  • Svetlana M. Voloshko and
  • Dezso L. Beke

Beilstein J. Nanotechnol. 2014, 5, 1491–1500, doi:10.3762/bjnano.5.162

Graphical Abstract
  • AuxCu1.5x solid solutions. Figure 9 shows bright field (top view) TEM images and selected area electron diffraction patterns of as deposited and heat treated (for 1 h at 160 °C) Au(10nm)/Cu(15nm) bilayers, respectively. For TEM investigations the specimens were prepared by subsequent magnetron sputtering on
  • ) system a) as deposited sample and b) annealed samples. XRD θ–2θ patterns of Au(25nm)/Cu(12nm) annealed samples. Bright field (top view) TEM images of Au(10nm)/Cu(15nm) bilayer a) as deposited and c) after 1 h of heat treatment at 160 °C. The arrow indicates the area of formation of a new phase. Selected
PDF
Album
Full Research Paper
Published 10 Sep 2014

Microstructural and plasmonic modifications in Ag–TiO2 and Au–TiO2 nanocomposites through ion beam irradiation

  • Venkata Sai Kiran Chakravadhanula,
  • Yogendra Kumar Mishra,
  • Venkata Girish Kotnur,
  • Devesh Kumar Avasthi,
  • Thomas Strunskus,
  • Vladimir Zaporotchenko,
  • Dietmar Fink,
  • Lorenz Kienle and
  • Franz Faupel

Beilstein J. Nanotechnol. 2014, 5, 1419–1431, doi:10.3762/bjnano.5.154

Graphical Abstract
  • corresponding to each nanocomposite film are shown below the bright-field TEM images. They demonstrate that the TiO2 matrix in the nanocomposite film is in an amorphous state. In similar manner, Ag–TiO2 nanocomposite thin films with varying Ag MVF (from 15 to 47%) have been synthesized and the corresponding
  • bright-field TEM images are shown in Figure 2. A closer look at all TEM images in Figure 2 reveals the growth of smaller as well as larger Ag nanoparticles during co-sputtering process and the average diameter of Ag nanoparticles increases with increasing Ag metal volume fraction. In fact a deeper look
  • at the TEM images of Au–TiO2 nanocomposites (Figure 1) also confirmed the growth of smaller Au nanoparticles apart from the clearly visible ones (those with dark contrast in the bright field TEM images). Such type of Ag nanoparticle growth has also been observed in other matrices, e.g., SiO2 [38
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2014

Synthesis, characterization, and growth simulations of Cu–Pt bimetallic nanoclusters

  • Subarna Khanal,
  • Ana Spitale,
  • Nabraj Bhattarai,
  • Daniel Bahena,
  • J. Jesus Velazquez-Salazar,
  • Sergio Mejía-Rosales,
  • Marcelo M. Mariscal and
  • Miguel José-Yacaman

Beilstein J. Nanotechnol. 2014, 5, 1371–1379, doi:10.3762/bjnano.5.150

Graphical Abstract
  • and collection semi-angles from 50 to 180 mrad. The probe size used was about 0.09 nm with the probe current of 22 pA. In addition, bright field (BF) STEM images were recorded by using a collection semi-angle of 11 mrad. Energy dispersive X-ray spectra were obtained by using a probe size of 0.13 nm
PDF
Album
Supp Info
Full Research Paper
Published 27 Aug 2014

PEGylated versus non-PEGylated magnetic nanoparticles as camptothecin delivery system

  • Paula M. Castillo,
  • Mario de la Mata,
  • Maria F. Casula,
  • José A. Sánchez-Alcázar and
  • Ana P. Zaderenko

Beilstein J. Nanotechnol. 2014, 5, 1312–1319, doi:10.3762/bjnano.5.144

Graphical Abstract
  • covalent attachment of targeting cargoes such as antibodies. Molecular structure of (S)-(+)-camptothecin (1) and its inactive form (2) through lactone ring hydrolysis at physiological pH. Bright field (a) and dark field (b) transmission electron microscopy (TEM) images and diffraction pattern (c) of USM
PDF
Album
Supp Info
Letter
Published 19 Aug 2014

Self-organization of mesoscopic silver wires by electrochemical deposition

  • Sheng Zhong,
  • Thomas Koch,
  • Stefan Walheim,
  • Harald Rösner,
  • Eberhard Nold,
  • Aaron Kobler,
  • Torsten Scherer,
  • Di Wang,
  • Christian Kübel,
  • Mu Wang,
  • Horst Hahn and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2014, 5, 1285–1290, doi:10.3762/bjnano.5.142

Graphical Abstract
  • removed from the substrate and subsequently rearranged on other substrates. The microstructure and chemical composition of the silver wires were analyzed by transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) spectroscopy. Figure 3a shows a typical bright-field TEM image of silver
  • homogeneous thickness and smooth surface. (d) Image of several long silver wires. TEM analysis of thin silver wires and corresponding EDX information. (a) Bright-field image of typical silver wires with the axes which should be oriented in [112] direction and (b) the corresponding SAED patterns recorded from
PDF
Album
Full Research Paper
Published 15 Aug 2014

Nanodiamond-DGEA peptide conjugates for enhanced delivery of doxorubicin to prostate cancer

  • Amanee D Salaam,
  • Patrick Hwang,
  • Roberus McIntosh,
  • Hadiyah N Green,
  • Ho-Wook Jun and
  • Derrick Dean

Beilstein J. Nanotechnol. 2014, 5, 937–945, doi:10.3762/bjnano.5.107

Graphical Abstract
  • conjugates, and imaged with fluorescent microscopy since the DGEA peptide contained a FITC fluorescent label. The merged bright field and fluorescence images of hMSCs and PC3 cells show the representative interaction that was observed between the ND-DGEA conjugates and the PC3 cells or the hMSCs (Figure 5
  • spectra of ND, ND-DGEA conjugates, and DGEA peptide. The presence of characteristic peaks for DGEA peptide in the spectrum for the ND-DGEA conjugates confirmed successful conjugation. Zeta potential and hydrodynamic size of ND, ND-DGEA, and ND-DGEA+DOX. Representative merged bright field and fluorescent
PDF
Album
Full Research Paper
Published 01 Jul 2014

Optimizing the synthesis of CdS/ZnS core/shell semiconductor nanocrystals for bioimaging applications

  • Li-wei Liu,
  • Si-yi Hu,
  • Ying Pan,
  • Jia-qi Zhang,
  • Yue-shu Feng and
  • Xi-he Zhang

Beilstein J. Nanotechnol. 2014, 5, 919–926, doi:10.3762/bjnano.5.105

Graphical Abstract
  • in Figure 12. Figure 12a is the bright field image, and Figure 12b is the overlay image. We found that there was a bright emission where F127-CdS/ZnS micelles were injected. In addition, we determined that the signal of the QDs (red) can be separated from the autofluorescence background (green). This
PDF
Album
Full Research Paper
Published 27 Jun 2014

Carbon dioxide hydrogenation to aromatic hydrocarbons by using an iron/iron oxide nanocatalyst

  • Hongwang Wang,
  • Jim Hodgson,
  • Tej B. Shrestha,
  • Prem S. Thapa,
  • David Moore,
  • Xiaorong Wu,
  • Myles Ikenberry,
  • Deryl L. Troyer,
  • Donghai Wang,
  • Keith L. Hohn and
  • Stefan H. Bossmann

Beilstein J. Nanotechnol. 2014, 5, 760–769, doi:10.3762/bjnano.5.88

Graphical Abstract
  • morphology were examined by bright-field and dark-field transmission electron microscopy (TEM) using an FEI Technai G2 transmission electron microscope at an electron acceleration voltage of 200 kV. High resolution images were captured using a standardized, normative electron dose and a constant defocus
PDF
Album
Supp Info
Full Research Paper
Published 02 Jun 2014
Graphical Abstract
  • of the respective orientations obtained from a qualitative analysis of the Hupd peaks are in good agreement with the results of the analysis of the bright field transmission electron microscope (BFTEM) images (see Table 1). Results from the more precise quantification by Ge and Bi adatom deposition
  • nanocrystals were stored in a few millilitres of ultrapure water. All chemicals and gases were used as received without any further purification. Sizes and shapes of the nanocrystals were characterized by bright field transmission electron microscopy (BFTEM) (Philips CM 200 kV). A droplet of an aqueous
PDF
Album
Full Research Paper
Published 28 May 2014

Plasma-assisted synthesis and high-resolution characterization of anisotropic elemental and bimetallic core–shell magnetic nanoparticles

  • M. Hennes,
  • A. Lotnyk and
  • S. G. Mayr

Beilstein J. Nanotechnol. 2014, 5, 466–475, doi:10.3762/bjnano.5.54

Graphical Abstract
  • shell consists of an oxygen-rich outer part of several nanometers thickness, which is in agreement with previous HRTEM bright field image results. Finally, the long-term stability of the samples has been analyzed. CS-NPs have therefore been stored for 12 months under ambient air conditions. Subsequent
  • ) over areas of approximately 100 μm2 have been recorded, which yielded values between Cu67Ni33 and Cu49Ni51, depending on the position on the sample. TEM inspection of the particles yields the same binodal size distribution as previously observed with SEM, which becomes apparent in Figure 6. TEM bright
  • field images show that all analyzed NPs present a darker core and brighter halo surrounding the latter. This halo is found to be more pronounced for larger particles and has a typical thickness of 4–5 nm (Figure 7). To gain quantitative information about the atomic structure of the nanoparticles
PDF
Album
Full Research Paper
Published 14 Apr 2014

Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses

  • Annalena Wolff,
  • Walid Hetaba,
  • Marco Wißbrock,
  • Stefan Löffler,
  • Nadine Mill,
  • Katrin Eckstädt,
  • Axel Dreyer,
  • Inga Ennen,
  • Norbert Sewald,
  • Peter Schattschneider and
  • Andreas Hütten

Beilstein J. Nanotechnol. 2014, 5, 210–218, doi:10.3762/bjnano.5.23

Graphical Abstract
  • and indexed. (a) t = 5 min, (b) t = 1 d, (c) t = 2 d. (d) Bright field and dark field images of an incomplete diamond-shaped particle as well as the corresponding electron diffraction pattern of the disc. The highlighted areas in the dark field image correspond to the marked reflex of the electron
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2014

Characterization of electroforming-free titanium dioxide memristors

  • John Paul Strachan,
  • J. Joshua Yang,
  • L. A. Montoro,
  • C. A. Ospina,
  • A. J. Ramirez,
  • A. L. D. Kilcoyne,
  • Gilberto Medeiros-Ribeiro and
  • R. Stanley Williams

Beilstein J. Nanotechnol. 2013, 4, 467–473, doi:10.3762/bjnano.4.55

Graphical Abstract
  • ) patterns as well as for transmission and scanning-transmission imaging from bright-field and high-angle annular dark-field (HAADF) detection. Figure 4a shows a low-magnification TEM image of the post-switched forming-free device. A careful analysis of the junction region in the ON state indicates no clear
  • . Scanning transmission electron microscopy (STEM) was also used to explore the forming-free device from a structural and morphological standpoint. Figure 5 depicts STEM images obtained from bright-field (BF) detection. BF imaging was utilized rather than HAADF detection due to the latter having an image
  • from a forming-free device in the ON state. (b) SAED patterns obtained in the two regions indicated in (a). Bright-field STEM images obtained within different regions of the forming-free device: (a) top electrode, (b) bottom electrode, and (c) junction. Acknowledgements Work at HP was partially
PDF
Album
Full Research Paper
Published 07 Aug 2013

Porous polymer coatings as substrates for the formation of high-fidelity micropatterns by quill-like pens

  • Michael Hirtz,
  • Marcus Lyon,
  • Wenqian Feng,
  • Andrea E. Holmes,
  • Harald Fuchs and
  • Pavel A. Levkin

Beilstein J. Nanotechnol. 2013, 4, 377–384, doi:10.3762/bjnano.4.44

Graphical Abstract
  • reservoir. Bright field and fluorescent microscopy images demonstrate huge differences in the patterning outcome for the different substrates. Plain paper (Figure 4a and Figure 4e) does not consistently take up phloxine B from the SPT, presumably in part because of a large surface roughness (that might have
  • spreading is observed along the fibres that are tens to hundreds of micrometers long (see Supporting Information File 1, Figure S1 for combined bright field and fluorescence images). This behaviour is consistent with the observation that hydrophobic barriers have to be on the order of at least 200 µm to be
  • . Comparison of printed phloxine B solution on different substrates. Fluorescence microscopy images of the printed solution on (a) paper, (b) nylon, (c) porous HEMA polymer film, and (d) nitrocellulose. Corresponding in situ bright-field images with delivery microchannel cantilever still in place for (e) paper
PDF
Album
Supp Info
Video
Full Research Paper
Published 19 Jun 2013

Ferromagnetic behaviour of Fe-doped ZnO nanograined films

  • Boris B. Straumal,
  • Svetlana G. Protasova,
  • Andrei A. Mazilkin,
  • Thomas Tietze,
  • Eberhard Goering,
  • Gisela Schütz,
  • Petr B. Straumal and
  • Brigitte Baretzky

Beilstein J. Nanotechnol. 2013, 4, 361–369, doi:10.3762/bjnano.4.42

Graphical Abstract
  • “grain boundary foam” responsible for the magnetic properties of pure and doped ZnO. (a) Bright-field TEM micrograph of the nanograined pure ZnO thin film deposited on a sapphire substrate by the novel liquid ceramics method. Electron diffraction pattern (b) shows only rings from the ZnO wurtzite
PDF
Album
Full Research Paper
Published 13 Jun 2013

Revealing thermal effects in the electronic transport through irradiated atomic metal point contacts

  • Bastian Kopp,
  • Zhiwei Yi,
  • Daniel Benner,
  • Fang-Qing Xie,
  • Christian Obermair,
  • Thomas Schimmel,
  • Johannes Boneberg,
  • Paul Leiderer and
  • Elke Scheer

Beilstein J. Nanotechnol. 2012, 3, 703–711, doi:10.3762/bjnano.3.80

Graphical Abstract
  • microscope picture of a MCBJ before electrochemical deposition of Ag (bright-field illumination). (b) Optical microscope picture after the deposition of Ag (dark-field illumination). (a) Light-induced signal (red) of a dry, electrochemically closed break junction, and the laser pulse (blue). (b) Spatially
PDF
Album
Full Research Paper
Published 24 Oct 2012

Focused electron beam induced deposition: A perspective

  • Michael Huth,
  • Fabrizio Porrati,
  • Christian Schwalb,
  • Marcel Winhold,
  • Roland Sachser,
  • Maja Dukic,
  • Jonathan Adams and
  • Georg Fantner

Beilstein J. Nanotechnol. 2012, 3, 597–619, doi:10.3762/bjnano.3.70

Graphical Abstract
  • -growth electron irradiation (dose 8.64 μC/μm2) was tuned to that of sample B, i.e., close to a [Co]/[Pt]-ratio of 1. From bright-field imaging a nanogranular structure was deduced with Co–Pt grains embedded in an amorphous, carbonaceous matrix. Figure 9 shows the diffraction images of the as-grown and
PDF
Album
Video
Review
Published 29 Aug 2012

Nano-structuring, surface and bulk modification with a focused helium ion beam

  • Daniel Fox,
  • Yanhui Chen,
  • Colm C. Faulkner and
  • Hongzhou Zhang

Beilstein J. Nanotechnol. 2012, 3, 579–585, doi:10.3762/bjnano.3.67

Graphical Abstract
  • observe the extended effects of the modification process. Figure 4c is a bright field TEM image of the area of the sample after controlled sidewall modification by helium ion irradiation. Figure 4d is a HAADF image of the same area. A rectangular hole is observed at the center of the image, this was
  • face of the sample at an angle of 15°. (c) Bright field TEM image of the area modified by helium ions. (d) HAADF image of the modified area. “I” shows the location of the wedge shape and “II” shows the circular area with bubbles. Inset is a SRIM simulation of 35 keV helium ions in silicon with the same
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2012

Magnetic-Fe/Fe3O4-nanoparticle-bound SN38 as carboxylesterase-cleavable prodrug for the delivery to tumors within monocytes/macrophages

  • Hongwang Wang,
  • Tej B. Shrestha,
  • Matthew T. Basel,
  • Raj K. Dani,
  • Gwi-Moon Seo,
  • Sivasai Balivada,
  • Marla M. Pyle,
  • Heidy Prock,
  • Olga B. Koper,
  • Prem S. Thapa,
  • David Moore,
  • Ping Li,
  • Viktor Chikan,
  • Deryl L. Troyer and
  • Stefan H. Bossmann

Beilstein J. Nanotechnol. 2012, 3, 444–455, doi:10.3762/bjnano.3.51

Graphical Abstract
  • : Prussian blue staining and counter stained by nuclear fast red 20×; b: 40×; c: control double-stable Mo/Ma Prussian blue stained and counter stained by nuclear fast red 20× (all images were taken in bright field). Flow cytometry of MNP-SN38 loaded double-stable Mo/Ma after 24 h. Side scatter was used to
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2012

X-ray absorption spectroscopy by full-field X-ray microscopy of a thin graphite flake: Imaging and electronic structure via the carbon K-edge

  • Carla Bittencourt,
  • Adam P. Hitchock,
  • Xiaoxing Ke,
  • Gustaaf Van Tendeloo,
  • Chris P. Ewels and
  • Peter Guttmann

Beilstein J. Nanotechnol. 2012, 3, 345–350, doi:10.3762/bjnano.3.39

Graphical Abstract
  • buoyant densities, which vary with the graphene thickness. Raman studies on samples produced by the same technique found no impurities, such as amorphous carbon, in the sample [21][22]. The setup of the HZB full-field X-ray microscope (Figure 1) is analogous to that of a bright-field light microscope: the
PDF
Album
Supp Info
Letter
Published 25 Apr 2012

Nanostructured, mesoporous Au/TiO2 model catalysts – structure, stability and catalytic properties

  • Matthias Roos,
  • Dominique Böcking,
  • Kwabena Offeh Gyimah,
  • Gabriela Kucerova,
  • Joachim Bansmann,
  • Johannes Biskupek,
  • Ute Kaiser,
  • Nicola Hüsing and
  • R. Jürgen Behm

Beilstein J. Nanotechnol. 2011, 2, 593–606, doi:10.3762/bjnano.2.63

Graphical Abstract
  • conventional bright-field TEM mode with much lower sensitivity and spatial resolution than obtained on the present instrument (FEI Titan). On the former instrument, the smallest Au particles that could be detected within the background of the porous matrix were around 1.2 nm in diameter. In the current
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2011

Tip-enhanced Raman spectroscopic imaging of patterned thiol monolayers

  • Johannes Stadler,
  • Thomas Schmid,
  • Lothar Opilik,
  • Phillip Kuhn,
  • Petra S. Dittrich and
  • Renato Zenobi

Beilstein J. Nanotechnol. 2011, 2, 509–515, doi:10.3762/bjnano.2.55

Graphical Abstract
  • transfer a monolayer of 2-PySH onto the gold surface. To pattern the surface of the gold film, a microcontact printing stamp with differently sized elevated circles in hexagonal arrays was used (Figure 6). In Figure 6, a bright field image of the stamp layout is depicted. The stamp consists of an array of
  • printing process. Incubation of the stamp in ethanolic solution with subsequent printing on a template-stripped gold surface. (b) Magnified bright field image of a microcontact printing stamp for thiol deposition. The stamp consists of 650 μm hexagons filled with regular arrays of circles of different
PDF
Album
Full Research Paper
Published 30 Aug 2011

Nanoscaled alloy formation from self-assembled elemental Co nanoparticles on top of Pt films

  • Luyang Han,
  • Ulf Wiedwald,
  • Johannes Biskupek,
  • Kai Fauth,
  • Ute Kaiser and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2011, 2, 473–485, doi:10.3762/bjnano.2.51

Graphical Abstract
  • , namely mechanical grinding and polishing followed by low angle Ar+-ion etching. Bright-field TEM and aberration corrected HRTEM images were taken on a FEI Titan TEM equipped with a Cs imaging corrector. Scanning TEM and energy dispersive X-ray spectra (EDX) were acquired on a FEI Titan equipped with an
  • HAADF-STEM detector and EDAX SiLi X-ray detector. Typical bright field TEM images in the as-prepared state (TA = 250 °C) and after annealing at 400 °C are shown in Figure 7. Apart from the MgO substrate and the Pt(100) film, the protective layer of SiO2 is also visible. In the as-prepared state an
  • presented. The data of the as-prepared state was taken from [11]. Details are discussed in the text. Bright field TEM images of Co NPs on Pt(100) films after annealing at TA = 250 °C (as-prepared state) and TA = 400 °C. HRTEM image of annealed Co NPs on Pt(100) film after TA = 500 °C for 30 min. The arrows
PDF
Album
Video
Full Research Paper
Published 23 Aug 2011

Preparation and characterization of supported magnetic nanoparticles prepared by reverse micelles

  • Ulf Wiedwald,
  • Luyang Han,
  • Johannes Biskupek,
  • Ute Kaiser and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2010, 1, 24–47, doi:10.3762/bjnano.1.5

Graphical Abstract
PDF
Album
Video
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities