Search results

Search for "carbon" in Full Text gives 1092 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Unveiling the nature of atomic defects in graphene on a metal surface

  • Karl Rothe,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2024, 15, 416–425, doi:10.3762/bjnano.15.37

Graphical Abstract
  • smallest defects appear as a depression without discernible interior structure suggesting the presence of vacancy sites in the graphene lattice. With an atomic force microscope, however, only one kind can be identified as a vacancy defect with four missing carbon atoms, while the other kind reveals an
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2024

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • ]. Antioxidant nanomaterials can be synthesized from carbon-based compounds, polymeric compounds, and metal-based compounds. Metal-based nanoantioxidants exhibit strong reactivity because there are atoms with unpaired electrons on the surface. Therefore, metal-based nanoantioxidants have a significant advantage
  • Gao’s group [37]. The Michaelis–Menten constant (Km) and maximum initial velocity (Vmax) values showed that copper-doped hollow carbon spheres had an eightfold higher CAT-like activity than pure carbon nanozymes. The oxidation state of copper may play a more important role regarding CAT-like activity
  • et al. constructed carbon dot-SOD nanozymes and CD98 CRISPR/Cas9 plasmids encapsulated in a metal-organic framework (MOF), and then camouflaged it with macrophage membrane [102]. In this system, the macrophage membrane guided the encapsulated nanozymes and CD98 CRISPR/Cas9 plasmids to accumulate at
PDF
Album
Review
Published 12 Apr 2024

On the mechanism of piezoresistance in nanocrystalline graphite

  • Sandeep Kumar,
  • Simone Dehm and
  • Ralph Krupke

Beilstein J. Nanotechnol. 2024, 15, 376–384, doi:10.3762/bjnano.15.34

Graphical Abstract
  • strain or piezoresistivity in graphene is expected to be small because the displacement of the Dirac point occurs in continuous k space, and strain-induced lattice distortions do not change the local band structure up to 20% strain [4]. In contrast, because of the quantized k space in carbon nanotubes
  • observed the plateau-like region as reported here, where the gauge factor is similar to the gauge factor at very low strain [24][33]. A plateau-like region has neither been observed in nanocrystalline graphite [33], amorphous carbon films [34], nor in metallic films [35]. The mechanism that leads to an
  • increase of resistance in amorphous carbon and gold films at large strain is crack formation. Also, in NCG, which is full of GBs and defects, crack formation and propagation have to be considered [36]. Assuming nanocrack formation at the GBs, we could understand the entire piezoresistance curve in the
PDF
Album
Full Research Paper
Published 08 Apr 2024

Comparative electron microscopy particle sizing of TiO2 pigments: sample preparation and measurement

  • Ralf Theissmann,
  • Christopher Drury,
  • Markus Rohe,
  • Thomas Koch,
  • Jochen Winkler and
  • Petr Pikal

Beilstein J. Nanotechnol. 2024, 15, 317–332, doi:10.3762/bjnano.15.29

Graphical Abstract
  • and carbon black pigment in an oily matrix [22]. (This procedure is very close to ISO 787-24). The L* value represents the ability of a titanium dioxide pigment to efficiently scatter light, whereas the b* value indicates whether the scattered light has longer or shorter wavelength, that is, whether
  • the scattered light is more yellow or more blue tinted. While the titanium dioxide particles scatter the light out of the mixture, the carbon black absorbs the light. The better the light scattering ability of the white pigment, the shorter the path length of the light in the paste. Thus, fewer
  • photons are absorbed by the carbon black pigment resulting in greater brightness. The TiO2 sample was mixed with carbon black, linseed oil, and filler (BaSO4) in defined proportions using a spatula, transferred to an automatic muller and mulled (2 × 50 revolutions). A drawdown (240 μm) of the mixture was
PDF
Album
Supp Info
Full Research Paper
Published 25 Mar 2024

Determining by Raman spectroscopy the average thickness and N-layer-specific surface coverages of MoS2 thin films with domains much smaller than the laser spot size

  • Felipe Wasem Klein,
  • Jean-Roch Huntzinger,
  • Vincent Astié,
  • Damien Voiry,
  • Romain Parret,
  • Houssine Makhlouf,
  • Sandrine Juillaguet,
  • Jean-Manuel Decams,
  • Sylvie Contreras,
  • Périne Landois,
  • Ahmed-Azmi Zahab,
  • Jean-Louis Sauvajol and
  • Matthieu Paillet

Beilstein J. Nanotechnol. 2024, 15, 279–296, doi:10.3762/bjnano.15.26

Graphical Abstract
  • generally, this point is critical for the characterization of samples synthesized using new methods or new precursors that can lead to the co-deposition of several by-products (such as carbon, oxides, and metals), which can significantly change the measured Raman intensities. Based on the results presented
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2024

Ultrasensitive and ultrastretchable metal crack strain sensor based on helical polydimethylsiloxane

  • Shangbi Chen,
  • Dewen Liu,
  • Weiwei Chen,
  • Huajiang Chen,
  • Jiawei Li and
  • Jinfang Wang

Beilstein J. Nanotechnol. 2024, 15, 270–278, doi:10.3762/bjnano.15.25

Graphical Abstract
  • -dimensional Ti3C2Tx MXene nanostacks [23]. The sensor exhibited a high GF of 772.6 when subjected to a strain range of 40–70%, owing to the presence of cracks induced in the MXene layer and carbon nanotubes (CNTs) acting as bridges. In a separate study, Xin et al. reported the fabrication of highly sensitive
  • %. Similarly, Kim et al. propose an approach incorporating a superaligned carbon nanotube sheet between a sensory metal film and an elastomer substrate, resulting in excellent and well-balanced strain sensing performance [26]. This characteristic imparts significant stretchability (ε = 100%) to the Pt crack
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2024

Vinorelbine-loaded multifunctional magnetic nanoparticles as anticancer drug delivery systems: synthesis, characterization, and in vitro release study

  • Zeynep Özcan and
  • Afife Binnaz Hazar Yoruç

Beilstein J. Nanotechnol. 2024, 15, 256–269, doi:10.3762/bjnano.15.24

Graphical Abstract
  • ]. Many well-designed agents have been developed for photothermal therapy, including carbon, metal, and organic nanocomposites [21]. Due to their superparamagnetic and heating potential, Fe3O4 nanoparticles have recently garnered attention, particularly in photothermal therapy research. Dopamine (DA) is a
  • visible in the nanostructures as N–H peaks located at 3500–3000 cm−1 (Figure 4b). This result demonstrates the effective incorporation of VNB into the nanostructure. As a result, the VNB compound exhibits a prominent peak attributed to the presence of a carboncarbon (C–C) group at 1573 cm−1 and a
PDF
Album
Full Research Paper
Published 28 Feb 2024

Multiscale modelling of biomolecular corona formation on metallic surfaces

  • Parinaz Mosaddeghi Amini,
  • Ian Rouse,
  • Julia Subbotina and
  • Vladimir Lobaskin

Beilstein J. Nanotechnol. 2024, 15, 215–229, doi:10.3762/bjnano.15.21

Graphical Abstract
  • (TiO2, SiO2, and Fe2O3), carbonaceous NPs (graphene, carbon nanotubes, and carbon black), semiconductors (CdSe) [26], and polymers [27], it lacks the set of short-range potentials required for calculating milk protein-aluminum adsorption energies. Here, we compute potentials of mean force (PMF) for Al
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2024

Ion beam processing of DNA origami nanostructures

  • Leo Sala,
  • Agnes Zerolová,
  • Violaine Vizcaino,
  • Alain Mery,
  • Alicja Domaracka,
  • Hermann Rothard,
  • Philippe Boduch,
  • Dominik Pinkas and
  • Jaroslav Kocišek

Beilstein J. Nanotechnol. 2024, 15, 207–214, doi:10.3762/bjnano.15.20

Graphical Abstract
  • × 5 cm; ion fluence accuracy: ∼5%; horizontal frequency: 400 Hz; vertical frequency: 40 Hz) and dedicated dosimetry [37]. At the lower-energy beamline, a 0.7 MeV/u 56Fe10+ beam was used. Dry samples were adhered onto an aluminum plate using a double-sided carbon tape (which also removes accumulated
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2024

Graphene removal by water-assisted focused electron-beam-induced etching – unveiling the dose and dwell time impact on the etch profile and topographical changes in SiO2 substrates

  • Aleksandra Szkudlarek,
  • Jan M. Michalik,
  • Inés Serrano-Esparza,
  • Zdeněk Nováček,
  • Veronika Novotná,
  • Piotr Ozga,
  • Czesław Kapusta and
  • José María De Teresa

Beilstein J. Nanotechnol. 2024, 15, 190–198, doi:10.3762/bjnano.15.18

Graphical Abstract
  • -beam bombardment, which initially introduces defects into the graphene structure and then knocks out carbon atoms, although the edges of the fabricated nanostructures remain rough after the process [11]. Other direct techniques, such as focused ion beam (FIB) milling with heavy Ga+ ions, are not
  • al. [13]. A direct graphene etching was proposed using a thin ice layer on top of the graphene surface. Upon interaction with electrons, the ice is dissociated into the reactive ions H+ or OH−, which subsequently interact with carbon atoms and form volatile species [14]. This method is modified based
  • on the direct delivery of water molecules into the scanning electron microscope chamber. This process is called focused electron-beam-induced etching (FEBIE) and was already demonstrated for thin amorphous carbon membranes a decade ago [15]. Oxygen or water vapor can be used for etching graphene [16
PDF
Album
Full Research Paper
Published 07 Feb 2024

Modification of graphene oxide and its effect on properties of natural rubber/graphene oxide nanocomposites

  • Nghiem Thi Thuong,
  • Le Dinh Quang,
  • Vu Quoc Cuong,
  • Cao Hong Ha,
  • Nguyen Ba Lam and
  • Seiichi Kawahara

Beilstein J. Nanotechnol. 2024, 15, 168–179, doi:10.3762/bjnano.15.16

Graphical Abstract
  • to vulcanized NR. Moreover, nanoscale carbon-derived materials such as graphene and GO pose limitations in traditional NR vulcanization due to their associated high production costs. However, when ultilized in small quantities, nanoscale carbon-derived materials demonstrate potential in graft
  • carbon-containing compounds occurs. The weight loss of GO-VTES(a) and GO-VTES(b) were quite similar, approx. 52% and 42%, respectively. After 800 °C, the residual ash was silica. The ash content was 8% for GO-VTES(a) and 42% for GO-VTES(b). From the ash content, it could be confirmed that the VTES was
PDF
Album
Full Research Paper
Published 05 Feb 2024

CdSe/ZnS quantum dots as a booster in the active layer of distributed ternary organic photovoltaics

  • Gabriela Lewińska,
  • Piotr Jeleń,
  • Zofia Kucia,
  • Maciej Sitarz,
  • Łukasz Walczak,
  • Bartłomiej Szafraniak,
  • Jerzy Sanetra and
  • Konstanty W. Marszalek

Beilstein J. Nanotechnol. 2024, 15, 144–156, doi:10.3762/bjnano.15.14

Graphical Abstract
  • are used in opto- and nanoelectronics. QDs establish a class of materials transitional between subatomic and mass types of matter. The classification of QDs according to the core material is divided into cadmium [7][8], silver [9][10], indium [9], carbon [11][12], and silicon [13][14]. Numerous
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2024

Development and characterization of potential larvicidal nanoemulsions against Aedes aegypti

  • Jonatas L. Duarte,
  • Leonardo Delello Di Filippo,
  • Anna Eliza Maciel de Faria Mota Oliveira,
  • Rafael Miguel Sábio,
  • Gabriel Davi Marena,
  • Tais Maria Bauab,
  • Cristiane Duque,
  • Vincent Corbel and
  • Marlus Chorilli

Beilstein J. Nanotechnol. 2024, 15, 104–114, doi:10.3762/bjnano.15.10

Graphical Abstract
  • deviation. Cryogenic transmission electron microscopy The nanoemulsions were mounted onto a copper grid with lacy carbon film (300 mesh). The acquisition was carried out with a MET Talos Arctica G2 apparatus. In vitro terpene release profile The in vitro release assays were conducted assuring sink
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2024

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • -stage synthesis of polymer composites based on PNIPAAm hydrogel was presented. Both conductive particles in the form of conductive carbon black (cCB) and MnCo2O4 (MCO) spinel particles were suspended in the three-dimensional structure of the hydrogel. The MCO particles in the resulting hydrogel
  • , drugs, metal nanoparticles, metal oxide nanoparticles, carbon nanotubes, or biomolecules. This is a very important advantage that opens ways of designing composite hydrogels with various properties and applications such as biomedical [8][9][10], biosensors [11][12][13], wearable electronics [14][15][16
  • appropriate electrical conductivity [22]. Suspension of conductive fillers in the hydrogel structure, such as metallic particles (gold nanoparticles, silver nanoparticles) [23][24][25], carbon-based materials (GO graphene oxide, CNT carbon nanotubes) [26][27][28], and conductive polymers (polyaniline
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024

Determination of the radii of coated and uncoated silicon AFM sharp tips using a height calibration standard grating and a nonlinear regression function

  • Perawat Boonpuek and
  • Jonathan R. Felts

Beilstein J. Nanotechnol. 2023, 14, 1200–1207, doi:10.3762/bjnano.14.99

Graphical Abstract
  • nanostructured materials, for example, graphene, carbon nanotubes, nanoscale semiconductors, biomaterials, and molecules. Mechanical properties such as surface stiffness, adhesion, friction, electrostatics, and electrowetting can be measured [1][2][3][4]. In contact mode scanning, the contact area between the
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2023

A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH3)2Cl]2

  • Elif Bilgilisoy,
  • Ali Kamali,
  • Thomas Xaver Gentner,
  • Gerd Ballmann,
  • Sjoerd Harder,
  • Hans-Peter Steinrück,
  • Hubertus Marbach and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2023, 14, 1178–1199, doi:10.3762/bjnano.14.98

Graphical Abstract
  • composition and morphology of FEBID deposits fabricated in an ultrahigh-vacuum (UHV) chamber were explored on different surfaces and at varied beam currents. In the gas phase, dissociative ionization was found to lead to significant carbon loss from this precursor, and about 50% of the chlorine was on average
  • amorphous matrixes of carbon with embedded metal crystallites and a gold content of 2–3 atom % [19], 10–40 atom % [20], and 8–20 atom % [21], respectively. This is most likely due to the fact that the CVD process is thermally driven, while in FEBID, the precursor fragmentation is primarily electron driven
  • precursor in the UHV setup. A close-to-complete phosphorous removal was observed and the Au/C ratio of the deposit was found to be 1:2. This corresponds to the average carbon loss per incident beam found in the DI gas-phase experiment, and was consistent with the dominating reaction pathways as determined
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2023

Sulfur nanocomposites with insecticidal effect for the control of Bactericera cockerelli

  • Lany S. Araujo-Yépez,
  • Juan O. Tigrero-Salas,
  • Vicente A. Delgado-Rodríguez,
  • Vladimir A. Aguirre-Yela and
  • Josué N. Villota-Méndez

Beilstein J. Nanotechnol. 2023, 14, 1106–1115, doi:10.3762/bjnano.14.91

Graphical Abstract
  • , and O, corresponding to the by-products of the reduction of sodium thiosulfate to sulfur (see Experimental section), were found [19][31][34]. Carbon is from the substrate used in the EDS analysis [35][36]. The TEM micrograph in Figure 3a reveals the formation of spherical SNPs that agglomerate into
PDF
Album
Full Research Paper
Published 17 Nov 2023

Properties of tin oxide films grown by atomic layer deposition from tin tetraiodide and ozone

  • Kristjan Kalam,
  • Peeter Ritslaid,
  • Tanel Käämbre,
  • Aile Tamm and
  • Kaupo Kukli

Beilstein J. Nanotechnol. 2023, 14, 1085–1092, doi:10.3762/bjnano.14.89

Graphical Abstract
  • nanocomposite layer. ZrO2–SnO2 stacked layers have been shown to perform as mechanically elastic and magnetizable films [6]. SnO2-coated carbon nanotubes have been studied as catalysts [7] and ZnO–SnO2 as functional composite in Li-ion batteries [8]. A recent review article from 2022 lists 27 different
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2023

Experimental investigation of usage of POE lubricants with Al2O3, graphene or CNT nanoparticles in a refrigeration compressor

  • Kayhan Dağıdır and
  • Kemal Bilen

Beilstein J. Nanotechnol. 2023, 14, 1041–1058, doi:10.3762/bjnano.14.86

Graphical Abstract
  • Kayhan Dagidir Kemal Bilen Department of Mechanical Engineering, Tarsus University, Mersin, Turkey Department of Mechanical Engineering, Ankara Yıldırım Beyazıt University, Ankara, Turkey 10.3762/bjnano.14.86 Abstract In this study, the use of nanolubricants containing Al2O3, graphene, and carbon
  • : Al2O3; carbon nanotubes; graphene; nanolubricant; polyolester oil; refrigeration compressor; Introduction Compressor performance is directly related to the thermophysical properties of the lubricant. Improving the thermophysical properties of lubricants can be tried as a method to improve compressor
  • to the fact that heat transfer is fundamentally a surface-related process [5]. Nanolubricants have been widely used in recent years to improve the performance of refrigeration compressors [6][7][8]. Singh et al. [9] experimentally verified the effect of addition of multiwalled carbon nanotube (MWCNT
PDF
Album
Full Research Paper
Published 02 Nov 2023

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • additional peroxidase substrates in LFAs increased the detection limit from the nanogram to the picogram level [16][17]. Various tracer elements have been developed to increase the sensitivity of an assay, including noble metal nanomaterials, metal oxides, plasmonic nanostructures, carbon-based materials
  • nanomaterials, including noble metal nanomaterials, semiconductor nanomaterials, carbon-based nanomaterials, and polymeric nanomaterials. Then, we review the unique nanoscale architecture of nanomaterials responsible for their photothermal properties. Finally, we explore the current status of photothermal LFA
  • properties, that is, plasmonic materials (e.g., Au, Ag, and Pt), semiconductor materials (e.g., transition metal oxides, transition metal chalcogenides, and transition metal dichalcogenides), carbon-based nanomaterials (such as graphene oxide and carbon nanotubes), and polymer nanomaterials [33][34] (Figure
PDF
Album
Review
Published 04 Oct 2023

Fragmentation of metal(II) bis(acetylacetonate) complexes induced by slow electrons

  • Janina Kopyra and
  • Hassan Abdoul-Carime

Beilstein J. Nanotechnol. 2023, 14, 980–987, doi:10.3762/bjnano.14.81

Graphical Abstract
  • electron beam with an organometallic target (e.g., focused electron beam-induced deposition, FEBID) is a promising technique for direct 3D deposition of high-purity materials with minimum residual carbon in the product on the surface [4][5]. The FEBID precursor molecules adsorb and diffuse on the surface
  • . Metal bis(acetylacetonate) complexes are of interest for many thin film fabrication techniques (e.g., chemical vapor deposition [9], atomic layer epitaxy [10], or atomic layer etching [11]) and as precursors for carbon materials, such as carbon nanotubes and carbon onion particles [12], or metal oxide
  • nanocrystals [13][14]. The popularity of these compounds is related to their volatile nature, ease of preparation, and often lower air sensitivity and toxicity in comparison to organometallic compounds containing carbon–metal bonds (e.g., metallocenes). In the context of a potential use of these organometallic
PDF
Album
Full Research Paper
Published 26 Sep 2023

Isolation of cubic Si3P4 in the form of nanocrystals

  • Polina K. Nikiforova,
  • Sergei S. Bubenov,
  • Vadim B. Platonov,
  • Andrey S. Kumskov,
  • Nikolay N. Kononov,
  • Tatyana A. Kuznetsova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2023, 14, 971–979, doi:10.3762/bjnano.14.80

Graphical Abstract
  • “WinXPow”. Elemental analysis was carried out on an X-ray fluorescence spectrometer S2 Picofox (Bruker) with total external reflection. Transmission electron microscopy (TEM) samples were dispersed in an ultrasonic bath with hexane and then deposited on copper grids with lacey carbon film (SPI Supplies
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2023

Metal-organic framework-based nanomaterials for CO2 storage: A review

  • Ha Huu Do,
  • Iqra Rabani and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 964–970, doi:10.3762/bjnano.14.79

Graphical Abstract
  • , directly linked to the rise in global temperature, has raised significant attention. Carbon capture and storage, particularly in association with adsorbents, has occurred as a pivotal approach to address this pressing issue. Large surface area, high porosity, and abundant adsorption sites make metal
  • tackle this issue is the advancement of carbon capture and storage (CCS) methods, particularly those involving highly efficient adsorbents [6][7]. The CCS process has the capability to effectively treat substantial volumes of CO2 emissions originating from conventional fossil fuel sources [8][9][10
  • ]. Therefore, identification and development of durable and efficient adsorbents are critical to the successful implementation of CCS. Until now, various classes of materials have been investigated for CO2 adsorption, such as covalent organic frameworks, molecular sieves, activated carbon, and metal-organic
PDF
Album
Review
Published 20 Sep 2023

Low temperature atomic layer deposition of cobalt using dicobalt hexacarbonyl-1-heptyne as precursor

  • Mathias Franz,
  • Mahnaz Safian Jouzdani,
  • Lysann Kaßner,
  • Marcus Daniel,
  • Frank Stahr and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2023, 14, 951–963, doi:10.3762/bjnano.14.78

Graphical Abstract
  • dicobalt hexacarbonyl tert-butylacetylene (CCTBA) can be used to deposit metallic cobalt in the temperature range from 125 to 200 °C [15]. As an exception, Kim et al. have reported the ALD of Co with Co2(CO)8 in the temperature range of 70 to 110 °C. However, this process resulted in a significant carbon
  • overview spectrum is given in Supporting Information File 1, Figure S1. The film mainly consists of the three elements carbon (63.1 atom %), oxygen (20.8 atom %), and cobalt (16.1 atom %). The main carbon 1s feature is located at 285.0 eV binding energy (Figure 5). This is the typical value for carbon in
  • alkyls [33]. It is likely that this correlates to the carbon bonded as −CH2− within the n-heptyne group of the used precursor. The second peak at 285.6 eV matches the bonding state of the terminating −CH3 groups. The third peak at 289.1 eV is likely correlated to −C=O bonds, especially originating from
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2023

Prediction of cytotoxicity of heavy metals adsorbed on nano-TiO2 with periodic table descriptors using machine learning approaches

  • Joyita Roy,
  • Souvik Pore and
  • Kunal Roy

Beilstein J. Nanotechnol. 2023, 14, 939–950, doi:10.3762/bjnano.14.77

Graphical Abstract
  • derivatives [15], 51 manufactured nanoparticles with varying core metals, coatings, and surface attachments [16], and 80 surface-modified multiwall carbon nanotubes have been reported. Another approach, namely nano-read-across (nano-RA) [17], has been used to determine the cytotoxicity of unknown
  • was added to HK-2 cells in Hyclone DMEM medium supplemented with 10% fetal bovine serum (FBS) and 100 mg penicillin/streptomycin and maintained at 37 °C in the presence of 5% carbon dioxide. Nine concentrations of heavy metal salts were added to a constant amount of nano-TiO2 (25 µmol/L). The details
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2023
Other Beilstein-Institut Open Science Activities