Search results

Search for "charge transport" in Full Text gives 123 result(s) in Beilstein Journal of Nanotechnology.

Effects of electronic coupling and electrostatic potential on charge transport in carbon-based molecular electronic junctions

  • Richard L. McCreery

Beilstein J. Nanotechnol. 2016, 7, 32–46, doi:10.3762/bjnano.7.4

Graphical Abstract
  • ; Introduction The field of Molecular Electronics investigates the behavior of molecules as elements in electronic circuits, with the intent of exploiting variations of molecular structure to realize unusual electronic functions [1][2][3][4]. Charge transport through single molecules and through ensembles of
  • of molecules oriented between two conductors, with charge transport through the molecular layer. The vast majority of existing junction structures are based on metal/molecule bonding such as the Au/thiol self-assembled monolayers [13][14][15][16][17][18][19][20][21], Langmuir–Blodgett films on metals
  • charge transport through the junction. Consider first the G9–AB–G9 model of Figure 1, in which the distance between the nearest carbon atoms in the two G9 rings in the optimized structure is 1.21 nm. Table 3 lists the H, H−1, and H−2 orbital energies and t values for the indicated pairs of orbitals. With
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2016

Chemiresistive/SERS dual sensor based on densely packed gold nanoparticles

  • Sanda Boca,
  • Cosmin Leordean,
  • Simion Astilean and
  • Cosmin Farcau

Beilstein J. Nanotechnol. 2015, 6, 2498–2503, doi:10.3762/bjnano.6.259

Graphical Abstract
  • considering that charge transport through the NP assembly occurs mainly by electron tunneling. The tunneling resistance depends exponentially on the interparticle distance l (surface to surface): RT ≈ eβl, where β is a tunneling decay constant that describes the tunneling of electrons along the organic
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2015

Probing the local environment of a single OPE3 molecule using inelastic tunneling electron spectroscopy

  • Riccardo Frisenda,
  • Mickael L. Perrin and
  • Herre S. J. van der Zant

Beilstein J. Nanotechnol. 2015, 6, 2477–2484, doi:10.3762/bjnano.6.257

Graphical Abstract
  • fluctuations caused by different molecular configurations. Our findings provide a way to gain additional information regarding the molecule–electrode interaction, in particular, the interesting interplay between molecular conformation, vibrations and charge transport. (a) Schematic of the inelastic electron
  • tunneling spectroscopy (IETS) in a single-molecule junction. Charge transport happens through the tail of the Lorentzian broadened occupied molecular level depicted. The wiggly red line represents a molecular vibration excited after an inelastic scattering event (shown also in the right panel). (b) IETS
PDF
Album
Supp Info
Full Research Paper
Published 24 Dec 2015

High electronic couplings of single mesitylene molecular junctions

  • Yuki Komoto,
  • Shintaro Fujii,
  • Tomoaki Nishino and
  • Manabu Kiguchi

Beilstein J. Nanotechnol. 2015, 6, 2431–2437, doi:10.3762/bjnano.6.251

Graphical Abstract
  • electrode perpendicular to the charge transport direction and (ii) mesitylene has tilted from the perpendicular orientation. Keywords: break junction; charge transport; mesitylene; single molecular junction; scanning tunnelling microscopy (STM); Introduction Along with increasing interests in molecular
  • electronics on the single molecular scale [1], much efforts have been devoted to understand charge transport in a single molecular junction, in which a single molecule is wired to two metal electrodes. In recent years single molecular junctions with electronic functionalities such as diodes [2][3][4][5][6][7
  • at least 10 times larger than di-substituted benzene such as BDT [38] and 1,4-benzenediamine (BDA) [16]. The mesitylene molecule can bind to metal electrodes with its molecular plane perpendicular to the direction of charge transport [20]. Here, we investigate the possible origin of the high
PDF
Album
Full Research Paper
Published 18 Dec 2015

Simulation of thermal stress and buckling instability in Si/Ge and Ge/Si core/shell nanowires

  • Suvankar Das,
  • Amitava Moitra,
  • Mishreyee Bhattacharya and
  • Amlan Dutta

Beilstein J. Nanotechnol. 2015, 6, 1970–1977, doi:10.3762/bjnano.6.201

Graphical Abstract
  • years, a drastic rise in the research activities on semiconductor core/shell nanowires (CSNWs) made of silicon and germanium has occurred. Such studies are often motivated by the excellent charge transport properties of the materials [1][2][3][4], for which they are now seen as prospective candidates
PDF
Album
Full Research Paper
Published 02 Oct 2015

Large-voltage behavior of charge transport characteristics in nanosystems with weak electron–vibration coupling

  • Tomáš Novotný and
  • Wolfgang Belzig

Beilstein J. Nanotechnol. 2015, 6, 1853–1859, doi:10.3762/bjnano.6.188

Graphical Abstract
  • analytically the Full Counting Statistics of the charge transport through a nanosystem consisting of a few electronic levels weakly coupled to a discrete vibrational mode. In the limit of large transport voltage bias the cumulant generating function can be evaluated explicitly based solely on the intuitive
PDF
Full Research Paper
Published 03 Sep 2015

Surface engineering of nanoporous substrate for solid oxide fuel cells with atomic layer-deposited electrolyte

  • Sanghoon Ji,
  • Waqas Hassan Tanveer,
  • Wonjong Yu,
  • Sungmin Kang,
  • Gu Young Cho,
  • Sung Han Kim,
  • Jihwan An and
  • Suk Won Cha

Beilstein J. Nanotechnol. 2015, 6, 1805–1810, doi:10.3762/bjnano.6.184

Graphical Abstract
  • (DC) bias voltages (OCV and 0.1 V with respect to the cathode) for the Cell-B were overlapped to differentiate the ohmic resistance (resulting from charge transport inside electrolyte) from the activation resistance (resulting from reaction kinetics at electrode–electrolyte interface), as shown in the
PDF
Album
Full Research Paper
Published 27 Aug 2015

Conductance through single biphenyl molecules: symmetric and asymmetric coupling to electrodes

  • Karthiga Kanthasamy and
  • Herbert Pfnür

Beilstein J. Nanotechnol. 2015, 6, 1690–1697, doi:10.3762/bjnano.6.171

Graphical Abstract
  • , diodes and logic switches [1]. Two decades after the proposal from Aviram and Ratner describing the molecular junction as p-n diodes [2] the experimental research in the field of molecular electronics [3] emerged. Even today, our understanding of the fundamental properties and charge transport mechanism
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2015

Electrical properties and mechanical stability of anchoring groups for single-molecule electronics

  • Riccardo Frisenda,
  • Simge Tarkuç,
  • Elena Galán,
  • Mickael L. Perrin,
  • Rienk Eelkema,
  • Ferdinand C. Grozema and
  • Herre S. J. van der Zant

Beilstein J. Nanotechnol. 2015, 6, 1558–1567, doi:10.3762/bjnano.6.159

Graphical Abstract
  • electronic coupling between the molecule and the metal electrode are essential to characterize charge transport in single-molecule junctions and to create new fundamental devices such as molecular motors or molecular machines [26][27]. Several previous studies have shown that stable and reproducible single
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2015

Current–voltage characteristics of manganite–titanite perovskite junctions

  • Benedikt Ifland,
  • Patrick Peretzki,
  • Birte Kressdorf,
  • Philipp Saring,
  • Andreas Kelling,
  • Michael Seibt and
  • Christian Jooss

Beilstein J. Nanotechnol. 2015, 6, 1467–1484, doi:10.3762/bjnano.6.152

Graphical Abstract
  • . Modeling diffusion length determination by EBIC The charge carrier diffusion length, L, is an important parameter to determine the recombination-limited charge transport processes in electronic devices [50]. It is connected to the charge carrier lifetime, τ, and mobility, μ, by the Einstein relation: While
PDF
Album
Full Research Paper
Published 07 Jul 2015

Enhanced fullerene–Au(111) coupling in (2√3 × 2√3)R30° superstructures with intermolecular interactions

  • Michael Paßens,
  • Rainer Waser and
  • Silvia Karthäuser

Beilstein J. Nanotechnol. 2015, 6, 1421–1431, doi:10.3762/bjnano.6.147

Graphical Abstract
  • groups to bind functional molecules to electrodes and thus, to construct electronic circuits. In this case, charge transport takes place through the fullerenes and crucially depends on the electrode coupling of C60 [5][6][7]. Therefore, it is essential to understand in detail the interactions at the C60
PDF
Album
Full Research Paper
Published 29 Jun 2015

Electron and heat transport in porphyrin-based single-molecule transistors with electro-burnt graphene electrodes

  • Hatef Sadeghi,
  • Sara Sangtarash and
  • Colin J. Lambert

Beilstein J. Nanotechnol. 2015, 6, 1413–1420, doi:10.3762/bjnano.6.146

Graphical Abstract
  • charge transport by means of an effective tight binding model. Finally, we investigate the thermoelectric properties of the device. Results and Discussion Figure 1 shows the molecular structure of the porphyrin-based single-molecule transistor (SET), which consists of two electro-burnt graphene
PDF
Album
Full Research Paper
Published 26 Jun 2015

Nano-contact microscopy of supracrystals

  • Adam Sweetman,
  • Nicolas Goubet,
  • Ioannis Lekkas,
  • Marie Paule Pileni and
  • Philip Moriarty

Beilstein J. Nanotechnol. 2015, 6, 1229–1236, doi:10.3762/bjnano.6.126

Graphical Abstract
  • depends both on the effective dimensionality and the amount of topological/charge disorder in the system. The distribution of nanocrystal connectivity due to this disorder plays an essential role in determining the topological “landscape” for charge transport, which can be affected at the nanoscopic
PDF
Album
Supp Info
Full Research Paper
Published 29 May 2015

Electrical characterization of single molecule and Langmuir–Blodgett monomolecular films of a pyridine-terminated oligo(phenylene-ethynylene) derivative

  • Henrry M. Osorio,
  • Santiago Martín,
  • María Carmen López,
  • Santiago Marqués-González,
  • Simon J. Higgins,
  • Richard J. Nichols,
  • Paul J. Low and
  • Pilar Cea

Beilstein J. Nanotechnol. 2015, 6, 1145–1157, doi:10.3762/bjnano.6.116

Graphical Abstract
  • efficient pyridyl–Au contacts. Previous contributions in the field have shown that the charge transport in molecular wires incorporating electron-withdrawing pyridyl-type anchoring groups is preferentially controlled by the lowest unoccupied molecular orbital (LUMO). That is, the pyridyl group decreases the
  • molecular environment is different in both cases. Whilst the molecules are closely packed within the LB film, no nearest molecules exist for the single molecule studies. A widely applied tunneling model for non-resonant tunneling charge transport was developed by Simmons [109]. In this model, the current I
  • gold substrates were studied using STM. The shape of the I–V curves and good fit with the Simmons model indicate that charge transport across of the metal–monolayer–metal junctions follows a nonresonant tunneling mechanism. Importantly, the conductance value in LB films (5.17 × 10−5 G0) is similar to
PDF
Album
Full Research Paper
Published 11 May 2015

Charge carrier mobility and electronic properties of Al(Op)3: impact of excimer formation

  • Andrea Magri,
  • Pascal Friederich,
  • Bernhard Schäfer,
  • Valeria Fattori,
  • Xiangnan Sun,
  • Timo Strunk,
  • Velimir Meded,
  • Luis E. Hueso,
  • Wolfgang Wenzel and
  • Mario Ruben

Beilstein J. Nanotechnol. 2015, 6, 1107–1115, doi:10.3762/bjnano.6.112

Graphical Abstract
  • efficiently accept and delocalize additional electrons) suggest more robust electron charge transport properties. This discrepancy is explained by the excimer formation, whose inclusion in the multiscale simulation workflow is expected to bring the theoretical simulation and experiment into agreement
PDF
Album
Full Research Paper
Published 05 May 2015

From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

  • Philipp Adelhelm,
  • Pascal Hartmann,
  • Conrad L. Bender,
  • Martin Busche,
  • Christine Eufinger and
  • Juergen Janek

Beilstein J. Nanotechnol. 2015, 6, 1016–1055, doi:10.3762/bjnano.6.105

Graphical Abstract
  • polysulfides in the case of lithium–sulfur or sodium–sulfur batteries, has only very recently been seriously taken into account. Viswanathan et al. suggest that Li2O2 grows only to film deposits of 5–10 nm in thickness because charge transport through the Li2O2 layer can only proceed by hole tunneling [92][93
PDF
Album
Review
Published 23 Apr 2015

Morphological and structural characterization of single-crystal ZnO nanorod arrays on flexible and non-flexible substrates

  • Omar F. Farhat,
  • Mohd M. Halim,
  • Mat J. Abdullah,
  • Mohammed K. M. Ali and
  • Nageh K. Allam

Beilstein J. Nanotechnol. 2015, 6, 720–725, doi:10.3762/bjnano.6.73

Graphical Abstract
  • superior to polycrystalline architectures in a unique way: the decrease of the number of grain boundaries ameliorates charge-carrier transport by permitting a direct and quick charge transport pathway and thus decreases the carrier path length, which in turn decreases recombination losses. To this end
PDF
Album
Full Research Paper
Published 12 Mar 2015

Simple approach for the fabrication of PEDOT-coated Si nanowires

  • Mingxuan Zhu,
  • Marielle Eyraud,
  • Judikael Le Rouzo,
  • Nadia Ait Ahmed,
  • Florence Boulc’h,
  • Claude Alfonso,
  • Philippe Knauth and
  • François Flory

Beilstein J. Nanotechnol. 2015, 6, 640–650, doi:10.3762/bjnano.6.65

Graphical Abstract
  • surface uncovered [16]. In order to improve the junction quality, a conformal PEDOT shell should be introduced to eliminate charge transport paths parallel to the diode. Compared with the spin coating technique, the electrochemical polymerization of PEDOT provides the possibility of excellent polymer
  • negative voltage range. This is an indication that most of the shunt paths for charge transport at reverse voltages are blocked. An extremely large shunt resistance (Rsh > 1 M∙Ω∙cm2) and a very low leakage current density (Jlk, on the order of μA/cm2) could be realized with this electrochemical method. The
PDF
Album
Full Research Paper
Published 04 Mar 2015

Hybrid spin-crossover nanostructures

  • Carlos M. Quintero,
  • Gautier Félix,
  • Iurii Suleimanov,
  • José Sánchez Costa,
  • Gábor Molnár,
  • Lionel Salmon,
  • William Nicolazzi and
  • Azzedine Bousseksou

Beilstein J. Nanotechnol. 2014, 5, 2230–2239, doi:10.3762/bjnano.5.232

Graphical Abstract
  • the SCO properties and the physical properties (magnetic, photonic, charge transport, etc.) of the surrounding matter. The present review constitutes an overview of these systems including their synthesis, theoretical modelling and future possible technological applications. Indeed, a recent strategy
PDF
Album
Review
Published 25 Nov 2014

Advances in NO2 sensing with individual single-walled carbon nanotube transistors

  • Kiran Chikkadi,
  • Matthias Muoth,
  • Cosmin Roman,
  • Miroslav Haluska and
  • Christofer Hierold

Beilstein J. Nanotechnol. 2014, 5, 2179–2191, doi:10.3762/bjnano.5.227

Graphical Abstract
  • . Therefore, all the carbon atoms in the nanotube can, in principle, interact with the analyte gas, while simultaneously supporting charge transport in the device. Thus, adsorbates and electrostatic charges and dipoles close to the nanotube can greatly impact charge transport. At the same time, the carbon
PDF
Album
Review
Published 20 Nov 2014

Experimental techniques for the characterization of carbon nanoparticles – a brief overview

  • Wojciech Kempiński,
  • Szymon Łoś,
  • Mateusz Kempiński and
  • Damian Markowski

Beilstein J. Nanotechnol. 2014, 5, 1760–1766, doi:10.3762/bjnano.5.186

Graphical Abstract
  • take part in the charge transport and add to the EPR signal instead. Thus, Curie’s law must be modified with the component resulting from the Equation 1 to take into account the changing number of localized spins. This result is presented in Figure 4 [36]. Another factor greatly influencing the EPR
PDF
Album
Review
Published 13 Oct 2014

The influence of molecular mobility on the properties of networks of gold nanoparticles and organic ligands

  • Edwin J. Devid,
  • Paulo N. Martinho,
  • M. Venkata Kamalakar,
  • Úna Prendergast,
  • Christian Kübel,
  • Tibebe Lemma,
  • Jean-François Dayen,
  • Tia. E. Keyes,
  • Bernard Doudin,
  • Mario Ruben and
  • Sense Jan van der Molen

Beilstein J. Nanotechnol. 2014, 5, 1664–1674, doi:10.3762/bjnano.5.177

Graphical Abstract
  • that dynamic changes in the molecular layers effectively lower the molecular tunnel barrier for BPP-based arrays at higher temperatures. Keywords: aromatic capping ligands; gold nanoparticles; molecular charge transport; self-assembly; surface enhanced Raman spectroscopy; Introduction Inspired by
  • . The observed spatial flexibility of the thiol-anchored BPP ligands is of interest for molecule chelation purposes, as it should facilitate the envisioned complexation of Fe(II) metal ions. Conductance measurements on a multilayered Au-NP–S-BPP network Charge transport in Au-NP–S-BPP network devices
  • , i.e., the electrostatic energy needed to add an electron onto the metallic nanoparticle (here C is the total capacitance of a nanoparticle in the array and e is the electron charge). In that case, Coulomb blockade will hamper charge transport. Earlier work on alkanethiol–gold nanoparticle networks
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2014

Magnesium batteries: Current state of the art, issues and future perspectives

  • Rana Mohtadi and
  • Fuminori Mizuno

Beilstein J. Nanotechnol. 2014, 5, 1291–1311, doi:10.3762/bjnano.5.143

Graphical Abstract
PDF
Album
Review
Published 18 Aug 2014

Gas sensing with gold-decorated vertically aligned carbon nanotubes

  • Prasantha R. Mudimela,
  • Mattia Scardamaglia,
  • Oriol González-León,
  • Nicolas Reckinger,
  • Rony Snyders,
  • Eduard Llobet,
  • Carla Bittencourt and
  • Jean-François Colomer

Beilstein J. Nanotechnol. 2014, 5, 910–918, doi:10.3762/bjnano.5.104

Graphical Abstract
  • charge transport [7], unlike in randomly oriented CNT meshes. Sensors made of aligned CNTs synthesized by plasma enhanced chemical vapour deposition (PECVD), have been reported to exhibit fast and high response at room temperature and detect 10 ppb NO2 when operated at 165 °C. Although the detection of
PDF
Album
Letter
Published 26 Jun 2014

Optical modeling-assisted characterization of dye-sensitized solar cells using TiO2 nanotube arrays as photoanodes

  • Jung-Ho Yun,
  • Il Ku Kim,
  • Yun Hau Ng,
  • Lianzhou Wang and
  • Rose Amal

Beilstein J. Nanotechnol. 2014, 5, 895–902, doi:10.3762/bjnano.5.102

Graphical Abstract
  • particulate films [12]. Consequently, this enhanced charge transport led to an improvement in the efficiency of light energy conversion. According to Zhu et al., as considering the charge collection efficiency between TiO2 nanoparticle-based and TNT-based DSSCs with comparable TiO2 thickness, the TNT-based
  • experimental results with the optical modeling results presents how charge generation and charge transport are associated with the unique morphological property of 1D-TNT photoanodes when enhancing the photovoltaic performance. Results and Discussion TNT-based N719 dye-sensitized solar cells Prior to
  • the excellent charge transport property of 1D-TNT structured photoanodes accompanying effective electron–hole charge separation and longer electron lifetime, which were confirmed by EIS analysis and the simulated electric field intensity. Therefore, our characterization approach employing optical
PDF
Album
Full Research Paper
Published 24 Jun 2014
Other Beilstein-Institut Open Science Activities