Search results

Search for "chemisorption" in Full Text gives 74 result(s) in Beilstein Journal of Nanotechnology.

The role of adatoms in chloride-activated colloidal silver nanoparticles for surface-enhanced Raman scattering enhancement

  • Nicolae Leopold,
  • Andrei Stefancu,
  • Krisztian Herman,
  • István Sz. Tódor,
  • Stefania D. Iancu,
  • Vlad Moisoiu and
  • Loredana F. Leopold

Beilstein J. Nanotechnol. 2018, 9, 2236–2247, doi:10.3762/bjnano.9.208

Graphical Abstract
  • amounts of Cl− and/or cations such as Ag+, Mg2+ or Ca2+ can be explained within the understanding of the adatom model – the chemisorption of cationic analytes onto the metal surface is mediated by the Cl− ions, whereas ions like Ag+, Mg2+ or Ca2+ mediate the electronic coupling of anionic species to the
  • AgNP surface by mediating the chemisorption of Cl− ions. Hence, cationic dye molecules are electronically coupled to the silver surface at these SERS-active sites, leading to high-intensity SERS spectra. The appearance of the SERS effect only after the electronic coupling of the analyte to the Ag
  • surface explains why the citrate surfactant is not SERS active in the as-synthesized cit-AgNPs. Nevertheless, the SERS spectrum of the citrate surfactant can be turned on by the chemisorption of the citrate molecules onto the metal surface, mediated by cations such as Ag+, Mg2+ or Ca2+. In general, all
PDF
Album
Supp Info
Full Research Paper
Published 22 Aug 2018

Improving the catalytic activity for hydrogen evolution of monolayered SnSe2(1−x)S2x by mechanical strain

  • Sha Dong and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2018, 9, 1820–1827, doi:10.3762/bjnano.9.173

Graphical Abstract
  • ]. The approximate value of ΔEZPE − TΔSH is 0.38 eV [70][71]. ΔEH is the hydrogen chemisorption energy and was calculated using Equation 3, where EM+H, EM, and EH2 are the total energy of the catalyst with an adsorbed hydrogen atom, the total energy of the catalyst without adsorption of hydrogen, and the
PDF
Album
Full Research Paper
Published 18 Jun 2018

SO2 gas adsorption on carbon nanomaterials: a comparative study

  • Deepu J. Babu,
  • Divya Puthusseri,
  • Frank G. Kühl,
  • Sherif Okeil,
  • Michael Bruns,
  • Manfred Hampe and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2018, 9, 1782–1792, doi:10.3762/bjnano.9.169

Graphical Abstract
  • time. The relative influence of surface area and functional groups on the SO2 adsorption characteristics is discussed. The isosteric heat of adsorption values are calculated to quantify the nature of the interaction between the SO2 molecule and the adsorbent. Most importantly, while chemisorption is
  • . Physisorption alone cannot account for such a high value of the heat of adsorption. In activated carbons, it is known that the presence of oxygen functional groups and micropores in the 0.7 nm range can promote SO2 chemisorption [52][53]. The extensive microporous structure and the presence of oxygen functional
  • in this work. The calculated isosteric heat of adsorption value of ca. 71 kJ/mol at a loading of 1 mmol/g suggests that SO2 adsorbs on Norit R1 carbon by a chemisorption mechanism. A comparison of the adsorption characteristics of the different adsorbents at 1 bar suggests a linear relationship of
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2018

Uniform cobalt nanoparticles embedded in hexagonal mesoporous nanoplates as a magnetically separable, recyclable adsorbent

  • Can Zhao,
  • Yuexiao Song,
  • Tianyu Xiang,
  • Wenxiu Qu,
  • Shuo Lou,
  • Xiaohong Yin and
  • Feng Xin

Beilstein J. Nanotechnol. 2018, 9, 1770–1781, doi:10.3762/bjnano.9.168

Graphical Abstract
  • adsorption of RhB dye, which can provide active sites for chemisorption of RhB via the formation of stable bi-dentate complexes [13][41]. Thus, the porous carbon layer on the surface of NPLs and the well-dispersed Co nanoparticles could both contribute to the adsorption performance. Table S5 in Supporting
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2018

Formation mechanisms of boron oxide films fabricated by large-area electron beam-induced deposition of trimethyl borate

  • Aiden A. Martin and
  • Philip J. Depond

Beilstein J. Nanotechnol. 2018, 9, 1282–1287, doi:10.3762/bjnano.9.120

Graphical Abstract
  • deposition rate with temperature is expected for the majority of EBID precursors. However, it is in stark contrast to the silicon alkoxide precursor TEOS [14]. The deposition rate of TEOS recovers at high temperature through the activation of chemisorption where scission of Si–O bonds enables TEOS to react
  • with the hydroxylated surface to form adsorbed ethoxysiloxanes [25][26]. TMB does not undergo the transition from physisorbed to predominantly chemisorbed reaction kinetics, because the surface bonding configuration and/or strength of the B–O bond does not allow for the activation of chemisorption in
  • this system. This finding is significant as it confirms that alkoxy ligand precursors are not necessarily a perfect candidate for chemisorption, which would enable recovery of the deposition rate at high temperature. When compared to conventional, EBID at the scale of a few micrometers at room
PDF
Album
Supp Info
Letter
Published 24 Apr 2018

A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide

  • Shahreen Binti Izwan Anthonysamy,
  • Syahidah Binti Afandi,
  • Mehrnoush Khavarian and
  • Abdul Rahman Bin Mohamed

Beilstein J. Nanotechnol. 2018, 9, 740–761, doi:10.3762/bjnano.9.68

Graphical Abstract
  • chemisorption The behaviour of the SCR-NH3 catalyst deposition is typically characterised by: temperature-programmed surface reaction (TPSR) mass spectroscopy (MS) differential thermal analysis (DTA) thermogravimetric analysis (TGA) temperature-programmed hydrogenation (TPH) temperature-programmed oxidation
PDF
Review
Published 27 Feb 2018

Fabrication of CeO2–MOx (M = Cu, Co, Ni) composite yolk–shell nanospheres with enhanced catalytic properties for CO oxidation

  • Ling Liu,
  • Jingjing Shi,
  • Hongxia Cao,
  • Ruiyu Wang and
  • Ziwu Liu

Beilstein J. Nanotechnol. 2017, 8, 2425–2437, doi:10.3762/bjnano.8.241

Graphical Abstract
  • [40]. Therefore, the molecular oxygen activation and extraction preferentially takes place at the interface site between MOx and CeO2. During CO oxidation over the CeO2–MOx catalyst, MOx provides chemisorption sites for CO molecules, while CeO2 traps oxygen molecules with oxygen vacancies and
  • is another important factor that influences the catalytic activities. Previous studies have shown that Ni and Co cations are less efficient for CO chemisorption than Cu cations, resulting in inferior CO oxidation activity [44][45]. As previously reported, the catalytic activities of 5% doped M–CeO2
PDF
Album
Full Research Paper
Published 16 Nov 2017

Modelling focused electron beam induced deposition beyond Langmuir adsorption

  • Dédalo Sanz-Hernández and
  • Amalio Fernández-Pacheco

Beilstein J. Nanotechnol. 2017, 8, 2151–2161, doi:10.3762/bjnano.8.214

Graphical Abstract
  • adsorption processes. Two types of adsorption energies, describing both physisorption and spontaneous chemisorption, are included. Steady state solutions under no diffusion are investigated and compared under a wide range of conditions. The different growth regimes observed are fully explained by relative
  • employed in FEBID for physisorption [1]. The ML model presented here assumes several simplifications. First, chemisorption processes considered are spontaneous; energy barriers for activated chemisorption, which can be modelled via the inclusion of Arrhenius terms in the sticking coefficient [29], are not
  • disappears, whereas for heterogeneous MLs with high chemisorption energies (Figure 3c), there is no DD regime. The lack of RRL for a homogeneous ML model is a consequence of the disappearance of any saturation mechanism for surface coverage, as occurs for Langmuir adsorption (see how the white colour in
PDF
Album
Supp Info
Correction
Full Research Paper
Published 13 Oct 2017

Process-specific mechanisms of vertically oriented graphene growth in plasmas

  • Subrata Ghosh,
  • Shyamal R. Polaki,
  • Niranjan Kumar,
  • Sankarakumar Amirthapandian,
  • Mohamed Kamruddin and
  • Kostya (Ken) Ostrikov

Beilstein J. Nanotechnol. 2017, 8, 1658–1670, doi:10.3762/bjnano.8.166

Graphical Abstract
  • due to chemisorption and diffusion of carbon atoms to the edge of vertical sheets rather than the upward push by the released stress. The edges are partially hydrogen-terminated or closed by folded atomic carbon layers [23][55]. Edges of these sheets are reactive due to structural defects, dangling
  • reaching the substrate and increase the probability of chemisorption, which is favorable for the formation of stable nanostructures in interconnected vertical networks normal to the substrate. However, the heating effect due to plasma is not considered here as the plasma power and deposition distance are
  • the plasma is high and plasma-generated carbon species attach to the reactive edges of the vertical sheets through chemisorption and diffusion, thus promoting the growth of crystalline sheets. In contrast, hydrogen species, mostly radicals, chemically etch the small flakes and amorphous carbon, which
PDF
Album
Full Research Paper
Published 10 Aug 2017

Deposition of exchange-coupled dinickel complexes on gold substrates utilizing ambidentate mercapto-carboxylato ligands

  • Martin Börner,
  • Laura Blömer,
  • Marcus Kischel,
  • Peter Richter,
  • Georgeta Salvan,
  • Dietrich R. T. Zahn,
  • Pablo F. Siles,
  • Maria E. N. Fuentes,
  • Carlos C. B. Bufon,
  • Daniel Grimm,
  • Oliver G. Schmidt,
  • Daniel Breite,
  • Bernd Abel and
  • Berthold Kersting

Beilstein J. Nanotechnol. 2017, 8, 1375–1387, doi:10.3762/bjnano.8.139

Graphical Abstract
  • , Germany, Leibniz-Institute of Surface Modification (IOM), Permoser Str. 15, D-04318 Leipzig, Germany 10.3762/bjnano.8.139 Abstract The chemisorption of magnetically bistable transition metal complexes on planar surfaces has recently attracted increased scientific interest due to its potential application
  • , prevent the packing and self-assembly of the hydrocarbon chains. The smaller film thickness of 7 is attributed to the specific coordination mode of the coligand. Results of preliminary transport measurements utilizing rolled-up devices are also reported. Keywords: ambidentate ligands; chemisorption; gold
  • compounds are in good agreement with the reported trend. Chemisorption of complexes 6–8 on gold surfaces In view of the results obtained with the complexes 2 and 3, the deposition of the nickel complexes 6–8 on flat gold surfaces was examined. The deposition experiments were carried out in solution
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2017

Vapor deposition routes to conformal polymer thin films

  • Priya Moni,
  • Ahmed Al-Obeidi and
  • Karen K. Gleason

Beilstein J. Nanotechnol. 2017, 8, 723–735, doi:10.3762/bjnano.8.76

Graphical Abstract
  • p-xylylene diradical usually results in no chemical reaction. However, when a p-xylylene diradical collides with a cluster of two adsorbed diradicals, it can react to form a new, heavy chain that does not desorb from the surface [13]. Analysis by Fortin and Lu using the chemisorption model and
  • the reactive chain ends, thus growing the chain while still maintaining the active chain ends. This results in (1 − θ), the fraction of available sites for chemisorption, remaining essentially constant during the deposition, since it is proportional to the number of growing chains [13]. To reduce Γ
  • , the overall number of sites for chemisorption must decrease, meaning that the density of monomers adsorbed on the substrate surface must be reduced. This can be achieved by reducing the partial pressure of the monomer either by introducing an inert gas flow or by reducing the total pressure of the
PDF
Album
Review
Published 28 Mar 2017
Graphical Abstract
  • nanolayers. The porosity of the nanolayers was confirmed by AFM investigation. The XPS data analysis performed for SnO2 nanolayers after UHV annealing suggested that most of the ambient–layer interactions during air exposure were based on physisorption or weak chemisorption. The air exposure process caused
PDF
Album
Full Research Paper
Published 27 Feb 2017

Nanocrystalline TiO2/SnO2 heterostructures for gas sensing

  • Barbara Lyson-Sypien,
  • Anna Kusior,
  • Mieczylaw Rekas,
  • Jan Zukrowski,
  • Marta Gajewska,
  • Katarzyna Michalow-Mauke,
  • Thomas Graule,
  • Marta Radecka and
  • Katarzyna Zakrzewska

Beilstein J. Nanotechnol. 2017, 8, 108–122, doi:10.3762/bjnano.8.12

Graphical Abstract
  • sensing material in the first step [18]. The equation describing the oxygen chemisorption can be written as [19]: where is an oxygen molecule in the ambient atmosphere, e− is an electron that can reach the surface, S is an unoccupied chemisorption site, and represents chemisorbed oxygen species with α
  • is assumed to remain constant during its interaction with hydrogen. This is justified by pO2 >> pH2 and a high rate of oxygen chemisorption under the experimental conditions [1]. As the electron mobility μe is practically independent of the gas partial pressure, and the relationship for the
PDF
Album
Full Research Paper
Published 12 Jan 2017

Surface-enhanced Raman scattering of self-assembled thiol monolayers and supported lipid membranes on thin anodic porous alumina

  • Marco Salerno,
  • Amirreza Shayganpour,
  • Barbara Salis and
  • Silvia Dante

Beilstein J. Nanotechnol. 2017, 8, 74–81, doi:10.3762/bjnano.8.8

Graphical Abstract
  • ), and then with phospholipid vesicles of different composition to form a supported lipid bilayer (SLB). At each step, the SERS substrate functionality was assessed, demonstrating acceptable enhancement (≥100×). The chemisorption of thiols during the first step and the formation of SLB from the vesicles
  • , to let the sulfur of the –SH group bind covalently to the Au surface (chemisorption). The substrates were then gently washed with their aqueous solutions and dried under nitrogen flow. All the lipids were dissolved in chloroform/methanol 2:1 vol/vol, dried under a gentle nitrogen flux in a test tube
  • used as a control for success of the incubation of the tAPA–Au substrates in the lipid dispersion. In a preliminary step (data not shown) we have monitored the chemisorption of thiols onto the Au-coated QCM-D sensors; the functionalized sensors where then exposed to the lipid vesicles and the process
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2017

Scanning probe microscopy studies on the adsorption of selected molecular dyes on titania

  • Jakub S. Prauzner-Bechcicki,
  • Lukasz Zajac,
  • Piotr Olszowski,
  • Res Jöhr,
  • Antoine Hinaut,
  • Thilo Glatzel,
  • Bartosz Such,
  • Ernst Meyer and
  • Marek Szymonski

Beilstein J. Nanotechnol. 2016, 7, 1642–1653, doi:10.3762/bjnano.7.156

Graphical Abstract
  • layers of physisorbed species. Interestingly, an increased density of the molecular adsorbates leads to changes in the adsorption mode from physisorption to chemisorption, leaving the molecules arranged in a well-ordered brick-wall-like structure. In a more recent study, the same authors examined the
  • induced through a post-deposition annealing step. As-deposited molecules are extremely mobile and rather weakly interact with the substrate. Thermal treatment of the sample leads to the detachment of hydrogen atoms in the central void of the H2PC molecules. That in turn results in the chemisorption and
PDF
Album
Commentary
Published 09 Nov 2016

Ammonia gas sensors based on In2O3/PANI hetero-nanofibers operating at room temperature

  • Qingxin Nie,
  • Zengyuan Pang,
  • Hangyi Lu,
  • Yibing Cai and
  • Qufu Wei

Beilstein J. Nanotechnol. 2016, 7, 1312–1321, doi:10.3762/bjnano.7.122

Graphical Abstract
  • . According to the test results, it can be concluded that In2O3/PANI-2 nanofibers sensor exhibited unique selectivity to ammonia. A possible mechanism for the selectivity to NH3 is the chemisorption of NH3 on PANI in In2O3/PANI-2 forming ammonium [32]. Besides, the different gases show different electron
PDF
Album
Full Research Paper
Published 19 Sep 2016

Invariance of molecular charge transport upon changes of extended molecule size and several related issues

  • Ioan Bâldea

Beilstein J. Nanotechnol. 2016, 7, 418–431, doi:10.3762/bjnano.7.37

Graphical Abstract
  • particularly true in (chemisorption) cases where the anchoring groups form covalent bonds to the electrodes. Within current approaches to molecular charge transport, mostly based on nonequilibrium Keldysh Green’s functions (NEGF) combined with density functional theory (DFT), the molecular device is
PDF
Album
Supp Info
Full Research Paper
Published 11 Mar 2016

Rigid multipodal platforms for metal surfaces

  • Michal Valášek,
  • Marcin Lindner and
  • Marcel Mayor

Beilstein J. Nanotechnol. 2016, 7, 374–405, doi:10.3762/bjnano.7.34

Graphical Abstract
  • electrical properties [20]. Moreover, transistor-type devices from the same molecule have displayed fundamentally different transport characteristics [21][22]. The organization of the molecules within the junction is usually based on some sort of self-assembly using chemisorption or physisorption methods to
  • only prerequisite, in electronic applications also the contact point of the molecule with the substrate, which defines the coupling between molecule and electrode (substrate), must be controlled. One of the most important class of SAMs is based on the strong chemisorption of organosulfur compounds
  • described and chemisorbed on gold surfaces. In these molecular tripods, which yield a stable and perpendicular chemisorption of molecules, however, little or no attention has been paid to maintaining the functionality of anchored molecules. In order to enable a fast electron transfer a strong and defined
PDF
Album
Review
Published 08 Mar 2016

Case studies on the formation of chalcogenide self-assembled monolayers on surfaces and dissociative processes

  • Yongfeng Tong,
  • Tingming Jiang,
  • Azzedine Bendounan,
  • Makri Nimbegondi Kotresh Harish,
  • Angelo Giglia,
  • Stefan Kubsky,
  • Fausto Sirotti,
  • Luca Pasquali,
  • Srinivasan Sampath and
  • Vladimir A. Esaulov

Beilstein J. Nanotechnol. 2016, 7, 263–277, doi:10.3762/bjnano.7.24

Graphical Abstract
  • report examines the assembly of chalcogenide organic molecules on various surfaces, focusing on cases when chemisorption is accompanied by carbon–chalcogen atom-bond scission. In the case of alkane and benzyl chalcogenides, this induces formation of a chalcogenized interface layer. This process can occur
PDF
Album
Supp Info
Full Research Paper
Published 17 Feb 2016

Surface-site reactivity in small-molecule adsorption: A theoretical study of thiol binding on multi-coordinated gold clusters

  • Elvis C. M. Ting,
  • Tatiana Popa and
  • Irina Paci

Beilstein J. Nanotechnol. 2016, 7, 53–61, doi:10.3762/bjnano.7.6

Graphical Abstract
  • , from Liu et al. [77]. The addition of the dispersion correction enhanced non-dissociative binding energies in MeSH by 0.2 to 0.7 eV, and moderately increased chemisorption energies (MeS) by 0.2 to 0.5 eV. Non-dissociative adsorption. The binding energy in non-dissociative adsorption was calculated as
PDF
Album
Full Research Paper
Published 18 Jan 2016

Plasma fluorination of vertically aligned carbon nanotubes: functionalization and thermal stability

  • Claudia Struzzi,
  • Mattia Scardamaglia,
  • Axel Hemberg,
  • Luca Petaccia,
  • Jean-François Colomer,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2015, 6, 2263–2271, doi:10.3762/bjnano.6.232

Graphical Abstract
  • chemisorption of oxygen leads to binding energy values ranging from 3–5 eV, depending on the chemisorption site [41]. In order to understand the effects of fluorination in valence electronic states of the vCNTs, UPS measurements were performed (Figure 3). First, we analyzed a pristine sample (red curve) after
PDF
Album
Supp Info
Full Research Paper
Published 01 Dec 2015

Continuum models of focused electron beam induced processing

  • Milos Toth,
  • Charlene Lobo,
  • Vinzenz Friedli,
  • Aleksandra Szkudlarek and
  • Ivo Utke

Beilstein J. Nanotechnol. 2015, 6, 1518–1540, doi:10.3762/bjnano.6.157

Graphical Abstract
  • simulate a wide range of processes reported in the FEBIP literature. These include: (i) etching and deposition performed using precursors that interact with a surface through physisorption and activated chemisorption, (ii) gas mixtures used to perform simultaneous focused electron beam induced etching and
  • chemisorption. We also note that most FEBIP models assume that sa is independent of temperature. The thermal desorption rate ka of the physisorbed species ‘a’ is given by: where τa is the adsorption time (i.e., adsorbate residence time), κa is the desorption attempt frequency, Ea the desorption energy, (i.e
  • molecules decompose partially via chemisorption upon collisions with unoccupied adsorption sites on the wall. This process is self-limiting after a short transient time during which all wall sites are occupied and the wall is passivated for further molecule decomposition. Nozzle geometries Two nozzle
PDF
Album
Review
Published 14 Jul 2015

Charge carrier mobility and electronic properties of Al(Op)3: impact of excimer formation

  • Andrea Magri,
  • Pascal Friederich,
  • Bernhard Schäfer,
  • Valeria Fattori,
  • Xiangnan Sun,
  • Timo Strunk,
  • Velimir Meded,
  • Luis E. Hueso,
  • Wolfgang Wenzel and
  • Mario Ruben

Beilstein J. Nanotechnol. 2015, 6, 1107–1115, doi:10.3762/bjnano.6.112

Graphical Abstract
  • spectroscopy (NT-PS) [16]. The purpose was to study the spin-dependent properties of the Co/Al(Op)3 hybrid interface in comparison with the Co/Alq3 hybrid interface [17]. Due to the difference in the aromatic structures of Al(Op)3 and Alq3, which influences the chemisorption onto the cobalt substrate, it was
PDF
Album
Full Research Paper
Published 05 May 2015

Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

  • Brett B. Lewis,
  • Michael G. Stanford,
  • Jason D. Fowlkes,
  • Kevin Lester,
  • Harald Plank and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2015, 6, 907–918, doi:10.3762/bjnano.6.94

Graphical Abstract
  • simulation coupled with (2) an explicit finite difference treatment of oxygen diffusion and the (3) Huen–Euler method to approximate the dissociative chemisorption of atomic oxygen on metal nanoparticle surfaces internal to the deposited solid. Electron energy loss converts bound oxygen into an activated
  • calculate the diffusion term in Equation 2. Importantly, the numerical approximation was derived including a variable pixel size which made it possible to “contract” the deposit based on the amount of carbon lost. The second term in Equation 2 describes the chemisorption of mobile oxygen gas as adsorbed
PDF
Album
Full Research Paper
Published 08 Apr 2015

SERS and DFT study of copper surfaces coated with corrosion inhibitor

  • Maurizio Muniz-Miranda,
  • Francesco Muniz-Miranda and
  • Stefano Caporali

Beilstein J. Nanotechnol. 2014, 5, 2489–2497, doi:10.3762/bjnano.5.258

Graphical Abstract
  • in high amount in the environment, aqueous solutions or soil. A very efficient way to protect copper surfaces is by creating an anticorrosive thin film by chemisorption of organic inhibitors. Heterocycles containing sulphur or nitrogen atoms, available for bonding with the copper surface, are widely
  • SERS activation was ensured by the deposition of silver colloidal nanoparticles on the copper substrate where the organic molecules were already stable and present due to chemisorption [9][10][11]. Regardless, it must be taken into account that the deposited silver particles, in addition to promoting
  • oxidation of the copper surface, as was evidenced by the absence of typical bands of Cu(I) oxide in the Raman spectra. Additionally, the observed frequency shifts of the SERS spectral peaks with respect to the corresponding non-SERS Raman spectral peaks of triazole in solution suggest chemisorption of the
PDF
Album
Full Research Paper
Published 29 Dec 2014
Other Beilstein-Institut Open Science Activities