Search results

Search for "conductivity" in Full Text gives 575 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • -based semiconductors, especially oxide semiconductors such as Bi2O3, BiVO4, and Bi2WO6, have n-type properties with electrons as the majority carrier. Recent research suggests that the synthesis route can shift the conductivity types of Bi-based materials [45][51]. Fabrication routes Synthesis
PDF
Album
Review
Published 11 Nov 2022

Enhanced electronic transport properties of Te roll-like nanostructures

  • E. R. Viana,
  • N. Cifuentes and
  • J. C. González

Beilstein J. Nanotechnol. 2022, 13, 1284–1291, doi:10.3762/bjnano.13.106

Graphical Abstract
  • by a facile synthesis and extensively studied by scanning and transmission electron microscopy. The nanostructures are made of pure and crystalline Tellurium with trigonal structure (t-Te), and exhibit p-type conductivity with enhanced field-effect hole mobility between 273 cm2/Vs at 320 K and 881
  • ]. In this case, conduction is realized through NNH of charge carriers with small activation energy directly over impurity states. The conductivity in the NNH model is given by [35]: where σ3 is a constant, ENNH is the activation energy for NNH conduction, NA is the acceptor concentration, and εr = 53.5
  • -nanobelt back-gated FET devices on SiO2/Si substrates. These nanostructures exhibit p-type conductivity with superior room temperature field-effect hole mobility compared to bulk and nanostructures of Te previously synthesized by other methods. The analysis of the temperature dependence of the electrical
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • resolution and durability or wear and tear and conductivity requirements must be considered before selecting a probe. Metal-coated probes are generally suitable for high-resolution or high conductivity test experiments. Metal nanoclusters adsorbed on two-dimensional materials grown on metal substrates are an
  • of the internal Pd nanowires will help probe more surface conductivity measurement, the nanowires with nanostructure or form good ohmic contact to the characterization of surface, external carbon nanotubes provide higher mechanical stability, can make the probe after many times of measuring still
  • keep its original shape. Low-resistance ohmic contacts between the metal surface and the PdNWCNT probe were confirmed. Moreover, repeated current flow and surface contact did not cause any damage to PdNWCNTs, indicating that the PdNWCNT probe is suitable for multi-probe conductivity measurement. In the
PDF
Album
Review
Published 03 Nov 2022

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • nanoarchitectonics concept in functional devices has been a hot research topic in recent years, and nanoarchitectonics has a significant impact on the improvement of mechanical structural strength, electrical conductivity, and optoelectronic properties [1][2][3]. The high porosity of nanostructured materials has a
  • have superior electrical conductivity and provide better electron transfer properties. Organic nanomaterials are complementary to inorganic nanomaterials in terms of physical properties. Although organic nanomaterials are usually poor in electrical conductivity, they have better properties in terms of
  • MEGs. Among them, carbon materials are favored by researchers due to their good electrical conductivity and mature preparation technologies. In addition, surface modification of materials is an important part of research for MEGs. The surface functional groups of inorganic nanomaterials are easy to
PDF
Album
Review
Published 25 Oct 2022

A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy

  • Hao Liu,
  • Zuned Ahmed,
  • Sasa Vranjkovic,
  • Manfred Parschau,
  • Andrada-Oana Mandru and
  • Hans J. Hug

Beilstein J. Nanotechnol. 2022, 13, 1120–1140, doi:10.3762/bjnano.13.95

Graphical Abstract
  • nitrogen (LN2) container and an additional heat shield, which is passively cooled by the evaporating He gases of the LHe tank (Figure 2a). The microscope is surrounded by two shields (a Au-plated oxygen-free high thermal conductivity (OFHC) copper LHe shield and an Al LN2 shield) of which there is an inner
PDF
Album
Full Research Paper
Published 11 Oct 2022

Green synthesis of zinc oxide nanoparticles toward highly efficient photocatalysis and antibacterial application

  • Vo Thi Thu Nhu,
  • Nguyen Duy Dat,
  • Le-Minh Tam and
  • Nguyen Hoang Phuong

Beilstein J. Nanotechnol. 2022, 13, 1108–1119, doi:10.3762/bjnano.13.94

Graphical Abstract
  • ) and sodium hydroxide (NaOH) were provided by Xilong Scientific Co., Ltd. Methylene blue and methyl orange were purchased from Merck Co., Ltd. Nutrients and agar powder were provided by Titan Co., Ltd. All reagents were of analytical grade. ZnCl2 and NaOH were diluted in DI water with low conductivity
PDF
Album
Full Research Paper
Published 07 Oct 2022

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • ][21][35]. However, pure phase MIL101(Fe), like most semiconductor photocatalysts, has inherent defects, such as low conductivity and high recombination efficiency of photogenerated electron–hole pairs [26][36]. To overcome these shortcomings, several strategies have been developed. One approach is to
  • use carbon nanotubes or carbon quantum dots to modify MIL101(Fe) to enhance its conductivity and broaden its visible-light response [37][38]. Another strategy is to construct MIL101-based heterostructures with the aid of narrow-gap semiconductors to promote the separation and transfer of
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media

  • Iyyappan Madakannu,
  • Indrajit Patil,
  • Bhalchandra Kakade and
  • Kasibhatta Kumara Ramanatha Datta

Beilstein J. Nanotechnol. 2022, 13, 1020–1029, doi:10.3762/bjnano.13.89

Graphical Abstract
  • attributes include high electrical conductivity, cost-effectiveness (50 times lower than Pt), and the ability to execute the ORR via a single step (four-electron transfer). Thus, Ag and its bi- and trimetallic alloys, with and without supporting matrices, have been extensively researched as potential ORR
  • and lower Tafel slope (giving rise to better electrokinetics) are the main reasons for the superior ORR performance of the ACC-2 sample. In addition to the catalyst size, morphology, conductivity, and the exposure of active sites, the surface wettability of the electrocatalyst significantly governs
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2022

Temperature and chemical effects on the interfacial energy between a Ga–In–Sn eutectic liquid alloy and nanoscopic asperities

  • Yujin Han,
  • Pierre-Marie Thebault,
  • Corentin Audes,
  • Xuelin Wang,
  • Haiwoong Park,
  • Jian-Zhong Jiang and
  • Arnaud Caron

Beilstein J. Nanotechnol. 2022, 13, 817–827, doi:10.3762/bjnano.13.72

Graphical Abstract
  • -temperature-liquid Ga-based alloys have been attracting interest from various scientific communities, including chemical [1], biomimetic [2], microfluidic [3], electrical [4], and materials science [5]. This increased interest is due to the low viscosity and high and electrical conductivity of these alloys
PDF
Album
Full Research Paper
Published 23 Aug 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • nanosheets spontaneously and precisely organized into films at the interface laminarly. The films could be easily transferred to other substrates, and showed superprotonic conductivity, which may be promising for fuel cells. The assembly process of 2D coordination polymer nanosheets could be confined inside
PDF
Album
Review
Published 12 Aug 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • graphite nature of GO. This confirms that the oxygen functional groups were removed from the graphene layers by electrochemical reduction of GO, decreasing the interspacing distance between graphene layers which facilitates electron transport. Thus, the conductivity of ERGO was enhanced compared to that of
  • depend on the number of layers and the distance between the layers, which can be changed by a variation of the synthesis protocol to achieve a higher electroactive surface area and electrical conductivity. Figure 4A displays a higher oxidation/reduction peak current of Fe2+/3+ redox couple for the
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

Modeling a multiple-chain emeraldine gas sensor for NH3 and NO2 detection

  • Hana Sustkova and
  • Jan Voves

Beilstein J. Nanotechnol. 2022, 13, 721–729, doi:10.3762/bjnano.13.64

Graphical Abstract
  • conductivity of PANI [2]. PANI can be synthesized chemically or electrochemically, with different results in terms of polymer conductivity [3]. There are three different ground states of oxidation, which leads to a large spectrum of the electric properties of PANI. First, leucoemeraldine, the fully reduced
  • base has to be reduced by electrons (Figure 1). Emeraldine base or leucoemeraldine base salts of green color and with conductivity values of up to 400 S/m can be obtained through synthesis [4]. Recently, the polyaniline emeraldine salt has been studied for sensor applications for various gases because
  • 100 μm wide and overlaying molecules contributed to the conductivity, sharing their charge carriers and allowing for carrier hopping, while the numerical experiment consisted of only one, 166 Å long molecule with non-interacting charge carriers. Considering these limitations, the agreement between the
PDF
Album
Full Research Paper
Published 26 Jul 2022

Nanoarchitectonics of the cathode to improve the reversibility of Li–O2 batteries

  • Hien Thi Thu Pham,
  • Jonghyeok Yun,
  • So Yeun Kim,
  • Sang A Han,
  • Jung Ho Kim,
  • Jong-Won Lee and
  • Min-Sik Park

Beilstein J. Nanotechnol. 2022, 13, 689–698, doi:10.3762/bjnano.13.61

Graphical Abstract
  • electrical conductivity further, ultimately leading to better electrochemical stability in the cathode. As a result, the optimized bimetallic ZIF–carbon/CNT composite exhibits a high discharge capacity of 16,000 mAh·g−1, with a stable cycling performance of up to 137 cycles. This feature is also beneficial
  • physicochemical properties of Li2O2 are reported to be dependent on many factors, including the pore structure of cathode. The electrical conductivity of the cathode is also essential for securing long-term cyclability as well as rate capability [12]. In this respect, various types of carbon materials have been
  • explored as advanced cathode materials for LOBs, owing to their controllable pore structure with a high surface-to-volume ratio and excellent electrical conductivity [13][14]. In particular, nitrogen-doped carbon materials have shown electrocatalytic activity towards the ORR and/or OER, which would be a
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2022

Experimental and theoretical study of field-dependent spin splitting at ferromagnetic insulator–superconductor interfaces

  • Peter Machon,
  • Michael J. Wolf,
  • Detlef Beckmann and
  • Wolfgang Belzig

Beilstein J. Nanotechnol. 2022, 13, 682–688, doi:10.3762/bjnano.13.60

Graphical Abstract
  • = e2/h is the conductance quantum, and G = σNA/d is the conductance of the film (in the direction perpendicular to the interface of cross section A). D and σN are the diffusion constant and the normal-state conductivity of the film, respectively. Note, that due to the normalization condition for
  • is the Boltzmann constant, and Tc is the critical temperature of the bulk superconductor. Using the conductivity the density of states at the Fermi energy of the free electron gas, and for the number of channels per area, we can simplify this to where vF is the Fermi velocity. With the definition
PDF
Album
Full Research Paper
Published 20 Jul 2022

Tunable high-quality-factor absorption in a graphene monolayer based on quasi-bound states in the continuum

  • Jun Wu,
  • Yasong Sun,
  • Feng Wu,
  • Biyuan Wu and
  • Xiaohu Wu

Beilstein J. Nanotechnol. 2022, 13, 675–681, doi:10.3762/bjnano.13.59

Graphical Abstract
  • structure, graphene supports much stronger binding of surface plasmon polaritons (SPPs) with less loss, which leads to a longer propagation distance compared with traditional metal SPPs [35]. In addition, its conductivity can be dynamically controlled by chemical doping or electrostatic fields owing to the
  • . TM polarized (the magnetic field is along the direction of the y-axis) monochromatic plane waves are incident from the substrate at an angle θ. In our simulation, we set d = 3.3 μm, w = 2.31 μm, h = 3.5 μm, nh = 3.48, ns = 1.45, and θ = 0.1°. The surface conductivity of graphene has intraband and
  • interband contributions and is described by: Here, σintra and σinter are the intraband and interband conductivity, respectively. In the mid-infrared wavelength region considered in this work, the Fermi level is greater than half of the photon energy, that is, ℏω < 2Ef. Thus, the intraband contribution will
PDF
Album
Full Research Paper
Published 19 Jul 2022

Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene

  • Teodora Vićentić,
  • Stevan Andrić,
  • Vladimir Rajić and
  • Marko Spasenović

Beilstein J. Nanotechnol. 2022, 13, 666–674, doi:10.3762/bjnano.13.58

Graphical Abstract
  • thickness for a reasonable electrical conductivity. For both, our films made from electrochemically exfoliated graphene and literature-referenced films made from ultrasonic LPE graphene, the percolation limit is reached at an optical transmittance of ca. 83%. This number quantifies the maximum transmittance
  • achievable with LB assembly of graphene films made from solution-dispersed material, for a reasonable electrical conductivity. Comparisons of our obtained percolative figure of merit and percolation exponent with those observed in literature reveal that the quality of the films obtained with our demonstrated
  • made from a solution that has been centrifuged at 5 krpm (2289g) is strikingly different from the ones made with lower centrifugation speeds. The 5 krpm (2289g) film has an irregular structure, resembling a fractal coastline. It is also noted that the conductivity of this film is much lower than those
PDF
Album
Full Research Paper
Published 18 Jul 2022

Comparative molecular dynamics simulations of thermal conductivities of aqueous and hydrocarbon nanofluids

  • Adil Loya,
  • Antash Najib,
  • Fahad Aziz,
  • Asif Khan,
  • Guogang Ren and
  • Kun Luo

Beilstein J. Nanotechnol. 2022, 13, 620–628, doi:10.3762/bjnano.13.54

Graphical Abstract
  • experimental data. Highly concurrent trends were achieved for the obtained results. According to the obtained results of MDS, adding CuO nanoparticles increased the thermal conductivity of water by 25% (from 0.6 to 0.75 W·m−1·K−1). However, by adding these nanoparticles to hydrocarbon-based fluids (i.e
  • ., alkane) the thermal conductivity was increased three times (from 0.1 to 0.4 W·m−1·K−1). This approach to determine the thermal conductivity of metal oxide nanoparticles in aqueous and nonaqueous fluids using visual molecular dynamics and interactive autocorrelations demonstrate a great tool to quantify
  • thermophysical properties of nanofluids using a simulation environment. Moreover, this comparison introduces data on aqueous and nonaqueous suspensions in one study. Keywords: alkanes; aqueous solutions; CuO; hydrocarbon solutions; molecular dynamics simulation; nanoparticles; thermal conductivity
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2022

Revealing local structural properties of an atomically thin MoSe2 surface using optical microscopy

  • Lin Pan,
  • Peng Miao,
  • Anke Horneber,
  • Alfred J. Meixner,
  • Pierre-Michel Adam and
  • Dai Zhang

Beilstein J. Nanotechnol. 2022, 13, 572–581, doi:10.3762/bjnano.13.49

Graphical Abstract
  • slightly decrease the in-plane electrical conductivity, whereas mirror twin boundaries lead to photoluminescence quenching and increase the conductivity [17]. Tip-enhanced Raman spectroscopy has been successfully used to visualize the point defect-related Raman vibrational modes in monolayer WS2 and edge
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2022

Influence of thickness and morphology of MoS2 on the performance of counter electrodes in dye-sensitized solar cells

  • Lam Thuy Thi Mai,
  • Hai Viet Le,
  • Ngan Kim Thi Nguyen,
  • Van La Tran Pham,
  • Thu Anh Thi Nguyen,
  • Nguyen Thanh Le Huynh and
  • Hoang Thai Nguyen

Beilstein J. Nanotechnol. 2022, 13, 528–537, doi:10.3762/bjnano.13.44

Graphical Abstract
  • , insert). The fit values for Rs and Rct1 reflect the catalytic behavior of CEs in DSSCs and are presented in Table 2. The Rs value for MoS2 CE-based DSSCs slightly increased with the thickness of the films and is comparable to that of Pt CE-based DSSCs. This is due to the high conductivity of the metallic
  • -5.0 (500 nm). This is in good agreement with the trend of Rs and Rct1 values (see Table 2 and Table 3). The effect of film thickness on the electrical conductivity of the MoS2 films was also investigated by I–V measurements (see Supporting Information File 1, Figure S2 and Table S1). The electrical
  • conductivity of the as-prepared MoS2 decreased in the order: MoS2-1.25 (75 mS·cm−1) > MoS2-2.5 (61 mS·cm−1) > MoS2-5.0 (46 mS·cm−1). This suggests that the thickness of the MoS2 film has a significant effect on the catalytic ability and photovoltaic performance of the CE in DSSCs. Additionally, the electron
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2022

The role of sulfonate groups and hydrogen bonding in the proton conductivity of two coordination networks

  • Ali Javed,
  • Felix Steinke,
  • Stephan Wöhlbrandt,
  • Hana Bunzen,
  • Norbert Stock and
  • Michael Tiemann

Beilstein J. Nanotechnol. 2022, 13, 437–443, doi:10.3762/bjnano.13.36

Graphical Abstract
  • , Germany 10.3762/bjnano.13.36 Abstract The proton conductivity of two coordination networks, [Mg(H2O)2(H3L)]·H2O and [Pb2(HL)]·H2O (H5L = (H2O3PCH2)2-NCH2-C6H4-SO3H), is investigated by AC impedance spectroscopy. Both materials contain the same phosphonato-sulfonate linker molecule, but have clearly
  • different crystal structures, which has a strong effect on proton conductivity. In the Mg-based coordination network, dangling sulfonate groups are part of an extended hydrogen bonding network, facilitating a “proton hopping” with low activation energy; the material shows a moderate proton conductivity. In
  • the Pb-based metal-organic framework, in contrast, no extended hydrogen bonding occurs, as the sulfonate groups coordinate to Pb2+, without forming hydrogen bonds; the proton conductivity is much lower in this material. Keywords: coordination network; coordination polymer; impedance spectroscopy
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2022

Electrostatic pull-in application in flexible devices: A review

  • Teng Cai,
  • Yuming Fang,
  • Yingli Fang,
  • Ruozhou Li,
  • Ying Yu and
  • Mingyang Huang

Beilstein J. Nanotechnol. 2022, 13, 390–403, doi:10.3762/bjnano.13.32

Graphical Abstract
  • functionality of nanostructures to process external stimuli applied to the device controlling the electrical current [12]. The lower pull-in voltage and the improved durability of the NEM switches require electrode materials with high Young’s modulus, conductivity, and Poisson's ratio. The flexible suspension
PDF
Album
Review
Published 12 Apr 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • carbon, silicon, boron, and halloysite clay sheets and possess unique physicochemical properties. Among nanotube structures, much attention has been paid to carbon nanotubes (CNTs) because of their excellent mechanical and tensile strength properties, thermal and electrical conductivity, and high surface
  • cardiomyocyte-incorporated CNT–GelMA hydrogel for TE of the cardiovascular system [132]. To fabricate CNT–GelMA nanocomposites, they added MWCNTs into GelMA to improve the electrophysiological and mechanical properties. The electrical conductivity of CNTs allowed the researchers to form nanocomposite 3D
PDF
Album
Review
Published 11 Apr 2022

Selected properties of AlxZnyO thin films prepared by reactive pulsed magnetron sputtering using a two-element Zn/Al target

  • Witold Posadowski,
  • Artur Wiatrowski,
  • Jarosław Domaradzki and
  • Michał Mazur

Beilstein J. Nanotechnol. 2022, 13, 344–354, doi:10.3762/bjnano.13.29

Graphical Abstract
  • devices (e.g., touch screens, light emitting diodes, optoelectronics, and photovoltaic organic devices) [1][2][3][4][5]. AZO has good long-term stable electrical and optical parameters, including high electrical conductivity and high optical transmission in the visible range. For the purpose of
  • conductivity [17]. It was also proven that electrically conductive and transparent AZO films could be deposited using the off-axis geometry [11][15][17]. With respect to the axis of magnetron, the substrates were placed at a distance greater than the radius of the target, that is, outside the erosion zone and
  • high transparency in the visible wavelength range and, simultaneously, poor intrinsic conductivity. However, substitutional doping by Al replacing Zn provides an extra electron, which can populate the conduction band and lead to an increase in conductivity. This implication is in good agreement with
PDF
Album
Full Research Paper
Published 31 Mar 2022

Investigation of a memory effect in a Au/(Ti–Cu)Ox-gradient thin film/TiAlV structure

  • Damian Wojcieszak,
  • Jarosław Domaradzki,
  • Michał Mazur,
  • Tomasz Kotwica and
  • Danuta Kaczmarek

Beilstein J. Nanotechnol. 2022, 13, 265–273, doi:10.3762/bjnano.13.21

Graphical Abstract
  • approximately 5 nm. To determine the type of electrical conductivity, thermoelectrical Seebeck effect measurements were conducted using a setup consisting of an INSTEC chamber equipped with four electrical probes and two hot chucks, an INSTEC MK1000 temperature controller, and an INSTEC LN2-P pump. The optical
  • used. All electrical measurements were made at controlled room temperature (23 °C) and humidity (30% RH) in ambient air. Results Electrical properties The resistivity of the thin film was determined to be 1 × 103 Ω·cm. The type of electrical conductivity was determined on the basis of the sign of the
  • conductivity of the prepared gradient thin film. The p-type of electrical conduction is often reported for Cu2O (or CuO)-based thin films, while TiO2 is an n-type oxide [46][47]. In the case of the prepared mixed (Ti–Cu)Ox thin film, the result obtained clearly testifies that holes are the major charge
PDF
Album
Full Research Paper
Published 24 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • alone [12]. In addition, ENHs have been utilized in energy applications as well. Zhang et al. developed a graphene oxide (GO)-based nanohybrid Nafion nanofiber as a proton-exchange membrane (PEM) for fuel cells to overcome low proton conductivity, high fuel permeability, and poor stability of
  • process parameters include the applied voltage, the distance from needle tip to collector, and the polymer flow rate. The solution parameters include solution concentration, molecular weight, solution viscosity, volatility of the solvents and solution conductivity. The ambient parameters are the
  • solubility, solvent conductivity, vapor pressure or the volatility of the solvent, and the electrospinnability of the solvents are the foremost parameters to be considered. Lasprilla-Botero et al. reported that the same polymer yielded different fiber when different solvents were used. This was due to the
PDF
Album
Review
Published 31 Jan 2022
Other Beilstein-Institut Open Science Activities