Search results

Search for "dendrimer" in Full Text gives 16 result(s) in Beilstein Journal of Nanotechnology.

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • precursor caused macrocyclization, resulting in a polyphenylene dendrimer. Further annealing at 623 K for 2 min resulted in surface-assisted cyclic hydrogenation and eventual conversion to the target zigzag coronoid C144. A magnified STM image of zigzag coronoid C144 reveals a hexagonal graphene nanoflake
PDF
Album
Review
Published 03 Apr 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • tumor inhibition was achieved [115]. Lv et al. prepared multifunctional dendrimer nanoscale complexes composed of anti-EGFR aptamer-modified poly(amidoamine) (PAMAM) loaded with erlotinib and chloroquine (CQ) for NSCLC treatment. These cationic nanoparticles showed high condensation capacity for
  • -tuned with DOTAP were 5A2-SC8 (a degradable dendrimer ionizable cationic lipid with pKa < 8), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), cholesterol, 1,2-dimyristoyl-rac-glycerol-methoxy(poly(ethylene glycol)) (DMG-PEG; 15/15/30/3, mol/mol), and mRNA (5A2-SC8/mRNA, 20/1, wt/wt) [154][155
PDF
Album
Review
Published 22 Feb 2023

Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems

  • Makoto Komiyama

Beilstein J. Nanotechnol. 2023, 14, 218–232, doi:10.3762/bjnano.14.21

Graphical Abstract
  • an eminent solution to this problem. For example, polyamidoamine dendrimer (generation 3) conjugated with α-CyD (average number = 2.4) is very effective to deliver siRNA to cells [62][63]. By appending folate, the conjugates are successfully targeted to tumor cells on which folate receptors are
  • abundantly expressed. In the positively charged dendrimer the siRNA is stably protected from enzymatic digestion. The composite easily escapes from the endosome through the proton sponge effect of the dendrimer. Furthermore, inclusion complex formation of α-CyD with phospholipids facilitates the release of
PDF
Album
Review
Published 09 Feb 2023

Antibacterial activity of a berberine nanoformulation

  • Hue Thi Nguyen,
  • Tuyet Nhung Pham,
  • Anh-Tuan Le,
  • Nguyen Thanh Thuy,
  • Tran Quang Huy and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2022, 13, 641–652, doi:10.3762/bjnano.13.56

Graphical Abstract
  • types of nanoformulations, such as polymer-, lipid-, dendrimer-, graphene-, gold-, or silver-based nanoparticles, have been used for the delivery of BBR [29][30][31]. Yu et al. [29] prepared poly(ethylene glycol)–lipid–poly(lactic-co-glycolic acid) nanoparticles loaded with BBR to improve the oral
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • dendrimer nps as well as inorganic nanoscale drug carriers are currently used for drug delivery [101]. Almost all of them show higher bioavailability as their uptake mechanism is by absorptive endocytosis, and the slow release of drugs in the blood circulatory system efficiently maintains the level of
PDF
Album
Review
Published 14 Feb 2022

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

Straightforward synthesis of gold nanoparticles by adding water to an engineered small dendrimer

  • Sébastien Gottis,
  • Régis Laurent,
  • Vincent Collière and
  • Anne-Marie Caminade

Beilstein J. Nanotechnol. 2020, 11, 1110–1118, doi:10.3762/bjnano.11.95

Graphical Abstract
  • 7314, 33 rue St Leu, 80039 Amiens cedex 1, France 10.3762/bjnano.11.95 Abstract A small water-soluble phosphorus-containing dendrimer was engineered for the complexation of gold(I) and for its reduction under mild conditions. Gold nanoparticles were obtained as colloidal suspensions simply and only
  • when the powdered form of this dendrimer was dissolved in water, as shown by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) analyses. The dendrimers acted simultaneously as mild reducers and as nanoreactors, favoring the self-assembly of gold atoms and promoting
  • the growth and stabilization of isolated gold nanoparticles. Thus, an unprecedented method for the synthesis of colloidal suspensions of water-soluble gold nanoparticles was proposed in this work. Keywords: colloidal suspension; complexation; dendrimer; gold nanoparticle; phosphorus; Introduction
PDF
Album
Supp Info
Letter
Published 28 Jul 2020

Enhanced antineoplastic/therapeutic efficacy using 5-fluorouracil-loaded calcium phosphate nanoparticles

  • Shanid Mohiyuddin,
  • Saba Naqvi and
  • Gopinath Packirisamy

Beilstein J. Nanotechnol. 2018, 9, 2499–2515, doi:10.3762/bjnano.9.233

Graphical Abstract
  • inhibit the cancer cells of an oral squamous cell carcinoma (OSCC) mouse xenograft model with increased blood retention time [20]. Furthermore, a poly(amidoamine) (PAMAM) dendrimer stabilized with a silver nanoparticle surface for the encapsulation of 5-FU showed synergistic growth inhibition in A549 and
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2018

Optical orientation of nematic liquid crystal droplets via photoisomerization of an azodendrimer dopant

  • Sergey A. Shvetsov,
  • Alexander V. Emelyanenko,
  • Natalia I. Boiko,
  • Alexander S. Zolot'ko,
  • Yan-Song Zhang,
  • Jui-Hsiang Liu and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2018, 9, 870–879, doi:10.3762/bjnano.9.81

Graphical Abstract
  • , Taiwan 10.3762/bjnano.9.81 Abstract Two sequential transformations of the orientational structure in nematic liquid crystal droplets containing a dendrimer additive (nanosized macromolecules with light-absorbing azobenzene terminal moieties) under light irradiation in the UV–blue spectral range were
  • investigated. The origin of these transitions is in the change of the boundary conditions due to photoisomerization of the dendrimer adsorbed onto the liquid crystal–glycerol interface. It was shown that the photoisomerization processes of dendrimer molecules in a liquid crystal are accompanied by a spatial
  • rearrangement of their azobenzene moieties, which is the key point in the explanation of the observed effects. Keywords: dendrimer; droplets; nematic liquid crystal; orientational transition; photo-orientation; Introduction Azobenzene compounds represent a very convenient tool for the development of
PDF
Album
Full Research Paper
Published 13 Mar 2018

Predicting cytotoxicity of PAMAM dendrimers using molecular descriptors

  • David E. Jones,
  • Hamidreza Ghandehari and
  • Julio C. Facelli

Beilstein J. Nanotechnol. 2015, 6, 1886–1896, doi:10.3762/bjnano.6.192

Graphical Abstract
  • techniques can be used for the development of predictive models of the cytotoxicity of poly(amido amine) (PAMAM) dendrimers using their chemical and structural properties. We present predictive models developed using 103 PAMAM dendrimer cytotoxicity values that were extracted from twelve cancer nanomedicine
  • resulting in their well-defined, highly branched structure [12][13]. The generation of the dendrimer is determined by the number of concentric shells that surround the core of the structure. These polymeric nanoparticles can easily be tailored for specific applications. Benefiting from their characteristic
  • potentially be expanded to other nanomaterials in the future. Results and Discussion Five different analyses were performed to classify a dendrimer as toxic or nontoxic using different combinations of molecular descriptors and experimental conditions. The first analysis utilized all the molecular descriptors
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2015

Experiences in supporting the structured collection of cancer nanotechnology data using caNanoLab

  • Stephanie A. Morris,
  • Sharon Gaheen,
  • Michal Lijowski,
  • Mervi Heiskanen and
  • Juli Klemm

Beilstein J. Nanotechnol. 2015, 6, 1580–1593, doi:10.3762/bjnano.6.161

Graphical Abstract
  • . Submitters can enter nanomaterial composition information (Figure 9) including: nanomaterial entities (e.g., dendrimer), functionalizing entities (e.g., small molecule), and chemical associations (e.g., covalent bond). This composition model supports the submission of complex particles (e.g., liposome
  • triazine dendrimer with paclitaxel. Composition information captures properties inherent to the dendrimer (e.g., generation), as well as properties inherent to several particle types (e.g., chemical name, molecular formula). Bottom diagram highlights high level concepts and properties pertaining to
  • composition. Example Nanoparticle Characterization in caNanoLab of a Dendrimer. Characterization information captures information about the assay type and experimental conditions (e.g., technique, concentrations, and observed measurements). Pictured here is an example in which the molecular weights of two
PDF
Album
Full Research Paper
Published 21 Jul 2015

Using natural language processing techniques to inform research on nanotechnology

  • Nastassja A. Lewinski and
  • Bridget T. McInnes

Beilstein J. Nanotechnol. 2015, 6, 1439–1449, doi:10.3762/bjnano.6.149

Graphical Abstract
  • the particle diameter of a poly(amidoamine) dendrimer [15] to very broad such as any toxicological hazard of nanoparticles [16]. Within the literature, there was also a discussion of the prospective NLP tools and algorithms that may be useful to provide information about a set of nanotechnology
  • quantitative data (i.e., numerical values for different characterization parameters) associated with a specific class of dendrimer, poly(amidoamine) (PAMAM), which shows promise for cancer treatment. PAMAM dendrimers are three-dimensional, highly-branched, polymeric ENMs synthesized by growing shells of
  • the numeric values and dendrimer property terms. The entities associated with PAMAM were based on the NanoParticle Ontology and included: (1) hydrodynamic diameter, (2) particle diameter, (3) molecular weight, (4) zeta potential, (5) cytotoxicity, (6) IC50, (7) cell viability, (8) encapsulation
PDF
Review
Published 01 Jul 2015

In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far?

  • Moritz Nazarenus,
  • Qian Zhang,
  • Mahmoud G. Soliman,
  • Pablo del Pino,
  • Beatriz Pelaz,
  • Susana Carregal-Romero,
  • Joanna Rejman,
  • Barbara Rothen-Rutishauser,
  • Martin J. D. Clift,
  • Reinhard Zellner,
  • G. Ulrich Nienhaus,
  • James B. Delehanty,
  • Igor L. Medintz and
  • Wolfgang J. Parak

Beilstein J. Nanotechnol. 2014, 5, 1477–1490, doi:10.3762/bjnano.5.161

Graphical Abstract
  • the NPs [14]. This all illustrates that virtually no two types of NPs are the same and their inherent structure, properties, and constituent materials will contribute to the way in which they are taken up by cells. For example, a 20 nm diameter polymeric dendrimer may be very flexible, whereas a 20 nm
PDF
Album
Review
Published 09 Sep 2014

Optimizing the synthesis of CdS/ZnS core/shell semiconductor nanocrystals for bioimaging applications

  • Li-wei Liu,
  • Si-yi Hu,
  • Ying Pan,
  • Jia-qi Zhang,
  • Yue-shu Feng and
  • Xi-he Zhang

Beilstein J. Nanotechnol. 2014, 5, 919–926, doi:10.3762/bjnano.5.105

Graphical Abstract
  • to the dendrimer template for preparing the QDs [33][34][35]. Because of the encapsulation, there is a change in the dielectric constant of the surrounding medium of the QDs, which can also be accounted for a shift of the emission wavelength. Extensive research on the properties of QDs revealed that
PDF
Album
Full Research Paper
Published 27 Jun 2014

Macromolecular shape and interactions in layer-by-layer assemblies within cylindrical nanopores

  • Thomas D. Lazzara,
  • K. H. Aaron Lau,
  • Wolfgang Knoll,
  • Andreas Janshoff and
  • Claudia Steinem

Beilstein J. Nanotechnol. 2012, 3, 475–484, doi:10.3762/bjnano.3.54

Graphical Abstract
  • and shape of the growing multilayer film, and therefore modify the point at which hindrance to pore-filling is reached. The LbL deposition of linear polyelectrolytes (linear-PEs) and of globular proteins within AAO nanopores was contrasted to the previously reported behavior of dendrimer
  • polyelectrolytes (dendrimer-PEs) [23]. Deposition of these macromolecules in AAO with pore diameters of d0 = 63–66 nm, was initially compared with deposition on a planar, charged gold surface. LbL experiments were then carried out in pores with different diameters d0, ranging from 25 to 80 nm, until the interior
  • , whereas this value was significantly lower for globular proteins (nmax = 3). Interestingly, for LbL deposition of dendrimer-polyelectrolytes (Scheme 1) in AAO with pores of the same size, an nmax = 7 was found (Supporting Information File 1, Figure S1) [23]. These polyelectrolyte dendrimers were N,N
PDF
Album
Supp Info
Video
Full Research Paper
Published 28 Jun 2012

Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors

  • Alexander Weddemann,
  • Inga Ennen,
  • Anna Regtmeier,
  • Camelia Albon,
  • Annalena Wolff,
  • Katrin Eckstädt,
  • Nadine Mill,
  • Michael K.-H. Peter,
  • Jochen Mattay,
  • Carolin Plattner,
  • Norbert Sewald and
  • Andreas Hütten

Beilstein J. Nanotechnol. 2010, 1, 75–93, doi:10.3762/bjnano.1.10

Graphical Abstract
  • ][16][17]. Such effects are shown in Figure 3: The subplots present particles synthesized in ortho-dichlorobenzene employing dicobalt octacarbonyl as a precursor. As a ligand (a) TOPO, (b) a mixture of oleic acid and oleylamine and (c) a mixture of TOPO and a dendrimer of the first generation is
  • is enhanced which can result in disk-shaped nanocrystals. In subplot (c), a bimodal particle distribution can be found. The two distinct sizes as shown in (d) result from different binding affinities of the tensides to the metal surface: Smaller particles are mainly stabilized by the dendrimer
  • , larger ones by TOPO. The dendrimer has a very high dissociation constant which results in a strong binding to the metal atoms and, therefore, in a slow growth. 1.2 Alternative methods 1.2.1 Micro emulsion and magnetotactic bacteria Another method for the synthesis of nanoparticles is the micro emulsion
PDF
Album
Review
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities