Search results

Search for "deposition" in Full Text gives 1031 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Controlling the electronic and physical coupling on dielectric thin films

  • Philipp Hurdax,
  • Michael Hollerer,
  • Larissa Egger,
  • Georg Koller,
  • Xiaosheng Yang,
  • Anja Haags,
  • Serguei Soubatch,
  • Frank Stefan Tautz,
  • Mathias Richter,
  • Alexander Gottwald,
  • Peter Puschnig,
  • Martin Sterrer and
  • Michael G. Ramsey

Beilstein J. Nanotechnol. 2020, 11, 1492–1503, doi:10.3762/bjnano.11.132

Graphical Abstract
  • completely. They show the onset of significant substrate attenuation, changes in the spectral lineshape, and an increase in the work function upon 6P deposition. The attenuation behavior suggests that the molecules fully wet the surface only for ΦMgO below 2.65 eV, where a 60% reduction in the MgO intensity
  • initial work function, either Φcrit or Φpin is the decisive work function for charge transfer. In order to better understand the transition between the two regimes, an alternative representation of the data from Figure 7 is given in Figure 8a. In the latter, the work function change upon 6P deposition as
  • temperature reaches 200 °C. At that point, since the intensity has almost returned to its value prior to the 6P deposition, all the molecules can be considered to be desorbed from the surface. This behavior is mirrored in the work function, which first decreases and then, at 160 °C, increases, returning to
PDF
Album
Full Research Paper
Published 01 Oct 2020

Self-assembly and spectroscopic fingerprints of photoactive pyrenyl tectons on hBN/Cu(111)

  • Domenik M. Zimmermann,
  • Knud Seufert,
  • Luka Ðorđević,
  • Tobias Hoh,
  • Sushobhan Joshi,
  • Tomas Marangoni,
  • Davide Bonifazi and
  • Willi Auwärter

Beilstein J. Nanotechnol. 2020, 11, 1470–1483, doi:10.3762/bjnano.11.130

Graphical Abstract
  • length 0.29 nm ± 0.05 nm) or was positioned in the hydrophobic pocket between the pyridyl group and the pyrene core of an adjacent molecule (see d2 and d3). trans-like-disubstituted pyrene Figure 3 shows the STM images of the surface after the deposition of the trans-like-disubstituted pyrene derivative
  • Information File 1). cis-like-disubstituted pyrene The deposition of the cis-like-disubstituted pyrene derivative 3 on hBN/Cu(111) at submonolayer coverage yielded extended, densely packed islands featuring straight edges. Figure 4a shows an STM image recorded at a bias voltage where both the molecular
  • sequential deposition of the cis-like derivative 3 and the trans-like pyrene 2 afforded binary architectures, including regular densely packed arrays and kagome networks hosting the species 3 in the large cavities (Figure S8, Supporting Information File 1). Scanning tunneling spectroscopic measurements Next
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2020

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • conditions, the size, length, and diameter of the nanostructures can be adjusted in order to control the physical properties of the NPs. Chemical methods A few examples of chemical methods that have been used to synthesize nanoparticles are the atomic layer deposition method, chemical reduction method
  • , chemical vapor deposition, electrochemical anodization method, hydrolysis, hydrothermal method, precipitation–hydrothermal method, reverse micellar route, sol–gel method, solution-based synthesis, solvothermal synthesis, and the sonochemical method. The most relevant ones, along with the typical resulting
  • particle sizes, are listed in Table 2. The atomic layer deposition method is employed to grow metal oxide and metallic three-dimensional nanostructures using porous alumina membranes [41], electrostatically spun nanofibers [39][40] or electrosprayed spherical particles [38] as templates. As Figure 1 shows
PDF
Album
Review
Published 25 Sep 2020

Wafer-level integration of self-aligned high aspect ratio silicon 3D structures using the MACE method with Au, Pd, Pt, Cu, and Ir

  • Mathias Franz,
  • Romy Junghans,
  • Paul Schmitt,
  • Adriana Szeghalmi and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2020, 11, 1439–1449, doi:10.3762/bjnano.11.128

Graphical Abstract
  • features cannot be achieved with dense silicon, i.e., a nanoporous silicon anode is required for a successful integration [8]. Also, integrated capacitors can benefit from the increased surface of nanowires with high aspect ratio. In combination with atomic layer deposition, one can fabricate integrated
  • other films. The Pt deposition rate has to be re-evaluated. The particle distribution is independent of the local position on the wafer. The given SEM images were taken at the wafer centre. Control measurements on the wafer edge show a comparable distribution. This uniformity is an essential requirement
  • , which has to be fulfilled for a successful integration at the wafer level. Ir (after 45 ALD cycles) has agglomerated in small (less than 15 nm) particles, which are randomly distributed on the sample surface. Here, 16% of the surface is covered with Ir particles. As the deposition was done by atomic
PDF
Album
Full Research Paper
Published 23 Sep 2020

Protruding hydrogen atoms as markers for the molecular orientation of a metallocene

  • Linda Laflör,
  • Michael Reichling and
  • Philipp Rahe

Beilstein J. Nanotechnol. 2020, 11, 1432–1438, doi:10.3762/bjnano.11.127

Graphical Abstract
  • holder. To reduce residual charge on the surface [25], the sample was heated at about 330 K for one hour prior to the deposition of the ferrocene molecules and NC-AFM experiments. Thin CaF2 films were prepared by deposition of CaF2 (purity 99.9%, Alfa Aesar, Kandel, Germany) from an EFM3T e-beam
  • details on the thin film growth and properties can be found in [22][26][27][28]. Deposition of 1,1’-ferrocene dicarboxylic acid (purity 98%, Alfa Aesar, Kandel, Germany) on samples held at room temperature was accomplished by sublimation from custom-built Knudsen cells heated to about 390 K. For bulk
PDF
Album
Full Research Paper
Published 22 Sep 2020

One-step synthesis of carbon-supported electrocatalysts

  • Sebastian Tigges,
  • Nicolas Wöhrl,
  • Ivan Radev,
  • Ulrich Hagemann,
  • Markus Heidelmann,
  • Thai Binh Nguyen,
  • Stanislav Gorelkov,
  • Stephan Schulz and
  • Axel Lorke

Beilstein J. Nanotechnol. 2020, 11, 1419–1431, doi:10.3762/bjnano.11.126

Graphical Abstract
  • Abstract Cost-efficiency, durability, and reliability of catalysts, as well as their operational lifetime, are the main challenges in chemical energy conversion. Here, we present a novel, one-step approach for the synthesis of Pt/C hybrid material by plasma-enhanced chemical vapor deposition (PE-CVD). The
  • platinum loading, degree of oxidation, and the very narrow particle size distribution are precisely adjusted in the Pt/C hybrid material due to the simultaneous deposition of platinum and carbon during the process. The as-synthesized Pt/C hybrid materials are promising electrocatalysts for use in fuel cell
  • applications as they show significantly improved electrochemical long-term stability compared to the industrial standard HiSPEC 4000. The PE-CVD process is furthermore expected to be extendable to the general deposition of metal-containing carbon materials from other commercially available metal
PDF
Album
Supp Info
Full Research Paper
Published 17 Sep 2020

Analysis of catalyst surface wetting: the early stage of epitaxial germanium nanowire growth

  • Owen C. Ernst,
  • Felix Lange,
  • David Uebel,
  • Thomas Teubner and
  • Torsten Boeck

Beilstein J. Nanotechnol. 2020, 11, 1371–1380, doi:10.3762/bjnano.11.121

Graphical Abstract
  • physical vapour deposition (UHV−PVD). The theoretical models are based on a fundamental description of the dewetting phenomenon from an energetic point of view. Closer attention is given to the thermodynamic differences between gold and silicon or between gold and silicon oxide in terms of free energy and
  • electron microscopy (TEM) images of gold particles formed on a silicon substrate at room temperature. Small gold clusters (<10 nm) are also seen between the droplets. Growth of germanium nanowires Figure 4 shows images of the resulting gold droplets on various substrates and the results after deposition of
  • germanium on these samples. In Figure 4a, a silicon oxide substrate was used for gold deposition. In Figure 4b, germanium was deposited onto a silicon oxide sample containing gold droplets at a deposition rate of 0.005 nm·s−1 and at 500 °C. No 1D structures were observed; instead, random germanium clusters
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2020

Impact of fluorination on interface energetics and growth of pentacene on Ag(111)

  • Qi Wang,
  • Meng-Ting Chen,
  • Antoni Franco-Cañellas,
  • Bin Shen,
  • Thomas Geiger,
  • Holger F. Bettinger,
  • Frank Schreiber,
  • Ingo Salzmann,
  • Alexander Gerlach and
  • Steffen Duhm

Beilstein J. Nanotechnol. 2020, 11, 1361–1370, doi:10.3762/bjnano.11.120

Graphical Abstract
  • [60] and vacuum-sublimed on clean metal surfaces (prepared by repeated Ar+ ion sputtering and annealing cycles [up to 550 °C]), with deposition rates of about 0.5 Å/min. The film mass thickness was monitored with a quartz crystal microbalance (QCM) near the sample, and a nominal thickness of 4 Å is
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2020

Controlling the proximity effect in a Co/Nb multilayer: the properties of electronic transport

  • Sergey Bakurskiy,
  • Mikhail Kupriyanov,
  • Nikolay V. Klenov,
  • Igor Soloviev,
  • Andrey Schegolev,
  • Roman Morari,
  • Yury Khaydukov and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1336–1345, doi:10.3762/bjnano.11.118

Graphical Abstract
  • prepared by using the magnetron sputtering system Leybold Heraeus Z-400 during a single deposition cycle without depressurization of the chamber. Only three targets were used for the structure preparation: niobium (99.95% purity) was used as a superconducting Cooper pair generator and interlayer separator
  • between two neighboring films of ferromagnetic layers grown using cobalt (99.95% purity). Pure silicon (99.999%) was the third target used to create a passivating layer to prevent structure oxidation. The details regarding the deposition technology were previously described [27]. The structure for the
PDF
Album
Full Research Paper
Published 07 Sep 2020

Effect of localized helium ion irradiation on the performance of synthetic monolayer MoS2 field-effect transistors

  • Jakub Jadwiszczak,
  • Pierce Maguire,
  • Conor P. Cullen,
  • Georg S. Duesberg and
  • Hongzhou Zhang

Beilstein J. Nanotechnol. 2020, 11, 1329–1335, doi:10.3762/bjnano.11.117

Graphical Abstract
  • demonstrated impressive on/off ratios (approx. 107) in field-effect transistors (FETs), while maintaining carrier mobilities that may be adequate for commercial applications [1][2]. At the same time, advances in chemical vapor deposition (CVD) techniques have allowed for the reliable millimeter-scale synthesis
  • by lift-off in acetone and metal deposition by evaporation (5 nm Ti and 35 nm Au). Electrical testing was carried out using a dual-channel source–measure unit connected to tungsten micromanipulator probes (Imina miBot) in the vacuum chamber of a customized Zeiss EVO scanning electron microscope (SEM
  • metal deposition increases the concentration of dangling bonds available for molecular hybridization when the contact metal is deposited [32]. As we are treating an already hybridized interface, we suspect that the formation of point defects therein, such as migrated interstitials and antisite defects
PDF
Album
Full Research Paper
Published 04 Sep 2020

Growth of a self-assembled monolayer decoupled from the substrate: nucleation on-command using buffer layers

  • Robby Reynaerts,
  • Kunal S. Mali and
  • Steven De Feyter

Beilstein J. Nanotechnol. 2020, 11, 1291–1302, doi:10.3762/bjnano.11.113

Graphical Abstract
  • buffer layer experiments. In order to minimize the influence of the domain borders of the buffer layers on the nucleation and the growth of the BA-OC14 domains, we first optimized the deposition conditions in order to obtain large domains of n-C50. Specifically, we targeted domain sizes of ≥250 nm × 250
  • –HOPG interface, we moved on to the self-assembly experiments with the buffer layer. Although the buffer layer experiments described below were carried out using sequential deposition of solutions of n-C50 and BA-OC14 (in that sequence), we stress that the outcome of the experiments remained the same
  • solution deposition. Thus, the solution of BA-OC14 was added to the bare HOPG substrate first and the monolayer formed (polymorph A) was imaged for a few hours to ascertain full surface coverage. In the second step, n-C50 solution was added to the surface and the STM imaging was resumed. This experiment
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2020

Proximity effect in [Nb(1.5 nm)/Fe(x)]10/Nb(50 nm) superconductor/ferromagnet heterostructures

  • Yury Khaydukov,
  • Sabine Pütter,
  • Laura Guasco,
  • Roman Morari,
  • Gideok Kim,
  • Thomas Keller,
  • Anatolie Sidorenko and
  • Bernhard Keimer

Beilstein J. Nanotechnol. 2020, 11, 1254–1263, doi:10.3762/bjnano.11.109

Graphical Abstract
  • techniques Samples of the nominal structure Pt(3 nm)/[Nb(1.5 nm)/Fe(x)]10/Nb(50 nm) were prepared on Al2O3() substrates using a DCA M600 MBE system with a base pressure of 10−10 mbar. Before deposition, the substrates were cleaned from organic contaminations with ethanol and isopropanol ex situ and heated at
  • thermal evaporation from an effusion cell while Nb and Pt were grown by electron beam evaporation. Reflection high-energy electron diffraction (RHEED) was measured in situ during deposition to trace the structure of the atomic layer being deposited. For the RHEED experiment, an electron beam of 15 keV
  •  2a) reveals a crystalline structure with Laue rings and Kikuchi lines indicating a smooth and ordered surface. Nb deposition at 800 °C results in a streaky pattern and a Laue ring (Figure 2c) revealing epitaxial growth in agreement with previous results [43][44][45][46]. In particular, the epitaxial
PDF
Album
Full Research Paper
Published 21 Aug 2020

Ultrasensitive detection of cadmium ions using a microcantilever-based piezoresistive sensor for groundwater

  • Dinesh Rotake,
  • Anand Darji and
  • Nitin Kale

Beilstein J. Nanotechnol. 2020, 11, 1242–1253, doi:10.3762/bjnano.11.108

Graphical Abstract
  • vapor deposition (LPCVD) furnace at 630 °C and boron doping (1018 per cm3) is carried out using ion implantation at 35 keV. The upper SiO2 layer is formed by re-oxidizing the polysilicon in an oxidation furnace [40]. The stiffness (k) of the fabricated piezoresistive sensor measured using AFM is 131–146
PDF
Album
Full Research Paper
Published 18 Aug 2020

Gas sorption porosimetry for the evaluation of hard carbons as anodes for Li- and Na-ion batteries

  • Yuko Matsukawa,
  • Fabian Linsenmann,
  • Maximilian A. Plass,
  • George Hasegawa,
  • Katsuro Hayashi and
  • Tim-Patrick Fellinger

Beilstein J. Nanotechnol. 2020, 11, 1217–1229, doi:10.3762/bjnano.11.106

Graphical Abstract
  • area (SSA) of the anode materials as well as the deposition of amorphous carbon films were shown to reduce irreversible capacity losses [22][23]. Ji et al. found that lower total pore volumes (determined by N2 sorption) gave rise to increased reversible sodium storage capacities for sucrose-derived HCs
  • only related to the measurable surface area for amorphous electrode materials. One may consider different deposition mechanisms (e.g., van der Merwe layer-by-layer or Volmer–Weber island growth) to explain this. However, it is more likely related to different contributions of porosity that is even
PDF
Album
Supp Info
Full Research Paper
Published 14 Aug 2020

3D superconducting hollow nanowires with tailored diameters grown by focused He+ beam direct writing

  • Rosa Córdoba,
  • Alfonso Ibarra,
  • Dominique Mailly,
  • Isabel Guillamón,
  • Hermann Suderow and
  • José María De Teresa

Beilstein J. Nanotechnol. 2020, 11, 1198–1206, doi:10.3762/bjnano.11.104

Graphical Abstract
  • . Helium ion microscopy in combination with a precursor gas can be used for direct writing of three-dimensional nanostructures with a precise control of their geometry, and a significantly higher aspect ratio than other additive manufacturing technologies. We report here on the deposition of 3D hollow
  • nano-antennas and sensors, based on 3D superconducting architectures. Keywords: electron tomography; focused ion beam induced deposition (FIBID); helium ion microscope; magneto-transport measurements; nano-superconductors; tungsten carbide (WC); Introduction Superconductors are dissipationless
  • dramatically, mostly due to the complex fabrication and characterization. A technique successfully utilized for fabricating 3D nano-objects is direct writing by a focused beam of positively charged particles, the so-called focused-ion-beam induced deposition (FIBID) [20]. A very promising development of FIBID
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2020

Hybridization vs decoupling: influence of an h-BN interlayer on the physical properties of a lander-type molecule on Ni(111)

  • Maximilian Schaal,
  • Takumi Aihara,
  • Marco Gruenewald,
  • Felix Otto,
  • Jari Domke,
  • Roman Forker,
  • Hiroyuki Yoshida and
  • Torsten Fritz

Beilstein J. Nanotechnol. 2020, 11, 1168–1177, doi:10.3762/bjnano.11.101

Graphical Abstract
  • -temperature scanning tunneling microscopy. Finally, the investigation of the valence band structure by ultraviolet photoelectron spectroscopy shows that the low work function of h-BN/Ni(111) further decreases after the DBP deposition. For this reason, the h-BN-passivated Ni(111) surface may serve as potential
  • bare Ni(111) as well as of DBP on h-BN/Ni(111) grown at substrate temperatures Tsub of 25 °C and 170 °C, respectively. For DBP on Ni(111) deposited at a substrate temperature of 25 °C we observe rather broad and featureless DR spectra at the beginning of the deposition. Such broad spectra are
  • structure In this section we discuss the impact of the h-BN interlayer on the lateral structure of DBP. The LEED measurement of DBP on bare Ni(111) (not shown) exhibits no molecular diffraction pattern, merely a diffuse background is formed upon deposition of DBP. We suggest that the strong interaction of
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2020

Scanning tunneling microscopy and spectroscopy of rubrene on clean and graphene-covered metal surfaces

  • Karl Rothe,
  • Alexander Mehler,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2020, 11, 1157–1167, doi:10.3762/bjnano.11.100

Graphical Abstract
  • backbones were presented in [25][26][27][34] for Au(111) and in [35] for Bi(111). In these reports, the deposition of molecules was performed at 5 K [25][26][27][34] and 100 K [35] with subsequent annealing at room temperature [25][26][27][34] and 350 K [35]. Therefore, deposition at low temperature seems
  • of the molecular backbone of C42H28 is not limited to low-temperature depositions. It was likewise observed for room-temperature deposition on low-index Cu surfaces [22][36] and Ag(100) [24]. The STM image in Figure 4c shows the influence of the Au(111) reconstruction on the C42H28 assembly
  • preparation parameters for C42H28 deposition on Au(111) as on Pt(111) leads to island growth with a regular superstructure. The crystalline adsorption phase unravels that low energy barriers for translation and rotation of the molecule exist because the individual C42H28 molecules can optimize the coupling to
PDF
Album
Full Research Paper
Published 03 Aug 2020

Revealing the local crystallinity of single silicon core–shell nanowires using tip-enhanced Raman spectroscopy

  • Marius van den Berg,
  • Ardeshir Moeinian,
  • Arne Kobald,
  • Yu-Ting Chen,
  • Anke Horneber,
  • Steffen Strehle,
  • Alfred J. Meixner and
  • Dai Zhang

Beilstein J. Nanotechnol. 2020, 11, 1147–1156, doi:10.3762/bjnano.11.99

Graphical Abstract
  • -catalyzed vapor–liquid–solid growth and silicon overcoating by thermal chemical vapor deposition. Local changes in the fraction of crystallinity in these silicon nanowires are characterized at an optical resolution of about 300 nm. Furthermore, we are able to resolve the variations in the intensity ratios
  • to chemical vapor deposition (CVD), and enables direct nanowire growth in a bottom-up manner. The nanowire composition, in particular the doping concentration, can be controlled by an adequate adjustment of the synthesis gas mixture, e.g., by setting the SiH4/B2H6 ratio during the synthesis of boron
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2020

Thermophoretic tweezers for single nanoparticle manipulation

  • Jošt Stergar and
  • Natan Osterman

Beilstein J. Nanotechnol. 2020, 11, 1126–1133, doi:10.3762/bjnano.11.97

Graphical Abstract
  • slide) coated on the sample side with a 300 nm chromium layer by vertical deposition, a 5 μm thick experimental chamber is created (Figure 1a). All glass surfaces were thoroughly cleaned before use and treated with plasma to remove any unwanted surface contaminants. All surfaces were additionally coated
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2020

Gram-scale synthesis of splat-shaped Ag–TiO2 nanocomposites for enhanced antimicrobial properties

  • Mohammad Jaber,
  • Asim Mushtaq,
  • Kebiao Zhang,
  • Jindan Wu,
  • Dandan Luo,
  • Zihan Yi,
  • M. Zubair Iqbal and
  • Xiangdong Kong

Beilstein J. Nanotechnol. 2020, 11, 1119–1125, doi:10.3762/bjnano.11.96

Graphical Abstract
  • , magnetron sputtering, molecular precursor techniques and photo-deposition techniques have been applied to the preparation of nanocomposites [6][21][22]. However, these techniques are very sophisticated and not optimized for synthesis on a large scale. Herein, a simple hydrothermal process was employed to
PDF
Album
Full Research Paper
Published 29 Jul 2020

Monolayers of MoS2 on Ag(111) as decoupling layers for organic molecules: resolution of electronic and vibronic states of TCNQ

  • Asieh Yousofnejad,
  • Gaël Reecht,
  • Nils Krane,
  • Christian Lotze and
  • Katharina J. Franke

Beilstein J. Nanotechnol. 2020, 11, 1062–1071, doi:10.3762/bjnano.11.91

Graphical Abstract
  • Mo deposition on the surface in a H2S atmosphere of 5·10−5 mbar, while the sample is annealed to 800 K. TCNQ molecules were deposited on the as-prepared sample held at 230 K. The sample was then cooled down and transferred to the scanning tunneling microscope (STM). All measurements were performed at
  • moiré pattern. Hence, we suggest that this site is most strongly affected by screening effects, which may vary on the different substrates [46] and partially compensate for hybridization effects. Electronic properties of TCNQ molecules on MoS2 on Ag(111) Deposition of TCNQ molecules (structure shown in
PDF
Album
Full Research Paper
Published 20 Jul 2020

Excitonic and electronic transitions in Me–Sb2Se3 structures

  • Nicolae N. Syrbu,
  • Victor V. Zalamai,
  • Ivan G. Stamov and
  • Stepan I. Beril

Beilstein J. Nanotechnol. 2020, 11, 1045–1053, doi:10.3762/bjnano.11.89

Graphical Abstract
  • to 2–3 eV. The crystalline structure of Sb2Se3 is quite uniform and stable which minimizes the energy loss due to radiation [3][7][8]. In combination, the binary arrangement (Sb, Se), high crystalline stability, low toxicity and low deposition temperature (melting point ≈611 °С) reduce the production
  • (In–Sb2Se3) contacts, the structures were obtained by either thermal sputtering under vacuum or electrochemical deposition onto the cleaved faces of single crystals (Figure 3A). Current–voltage characteristics suggest that the contacts have an ohmic behavior. The impedance has a frequency dependence
  • that is characteristic of the conductivity hopping mechanism which in turn is independent of the metal type and the deposition method used. The photocurrent increases when the energy of the photons increases in the Schottky barriers when the transparent contacts are illuminated. The structures with the
PDF
Album
Full Research Paper
Published 16 Jul 2020

Highly sensitive detection of estradiol by a SERS sensor based on TiO2 covered with gold nanoparticles

  • Andrea Brognara,
  • Ili F. Mohamad Ali Nasri,
  • Beatrice R. Bricchi,
  • Andrea Li Bassi,
  • Caroline Gauchotte-Lindsay,
  • Matteo Ghidelli and
  • Nathalie Lidgi-Guigui

Beilstein J. Nanotechnol. 2020, 11, 1026–1035, doi:10.3762/bjnano.11.87

Graphical Abstract
  • -enhanced Raman scattering (SERS) sensors for the detection of 17β-estradiol. Gold deposition on top of a TiO2 surface leads to the formation of nanoparticles the plasmonic properties of which fulfil the requirements of a SERS sensor. The morphological and optical properties of the surface were investigated
  • . Specifically, we demonstrate that the TiO2 background pressure during pulsed laser deposition and the annealing conditions offer control over the formation of Au nanoparticles with different sizes, shapes and distributions, yielding a versatile sensor. We have exploited the surface for the detection of 17β
  • template for the growth of Au NPs (in the following the samples will be referred as TiO2/Au). Both TiO2 film and Au NPs were synthetized by vapor phase deposition techniques (involving pulsed laser deposition and thermal evaporation) avoiding the use of solvents, while accurately tuning the morphology and
PDF
Album
Full Research Paper
Published 14 Jul 2020

Gas-sensing features of nanostructured tellurium thin films

  • Dumitru Tsiulyanu

Beilstein J. Nanotechnol. 2020, 11, 1010–1018, doi:10.3762/bjnano.11.85

Graphical Abstract
  • the high-vacuum deposition technique in order to grow Te nanotubes on silicon substrates containing previously deposited nanoparticles of silver or gold [22]. In both cases, 50 nm diameter Te nanotubes were obtained. When exposed to low concentrations of different toxic gases, including NO2, the Te
  • nanostructured Te films were studied with a special focus on the gas-response kinetics. Results and Discussion Sample preparation, morphology and structure Two methods were used to nanostructure Te-based films: growth of Te nanocrystals on Pyrex glass substrates or deposition of amorphous Te films onto
  • , without any cooling or heating of the latter. To grow films with a nanocrystalline structure, a growth rate of about 10 nm/s was used whereas, for amorphous thin films, the growth rate was increased to 30 nm/s. The deposition rate was increased by raising the temperature of the evaporator. The calibration
PDF
Album
Full Research Paper
Published 10 Jul 2020

Electrochemical nanostructuring of (111) oriented GaAs crystals: from porous structures to nanowires

  • Elena I. Monaico,
  • Eduard V. Monaico,
  • Veaceslav V. Ursaki,
  • Shashank Honnali,
  • Vitalie Postolache,
  • Karin Leistner,
  • Kornelius Nielsch and
  • Ion M. Tiginyanu

Beilstein J. Nanotechnol. 2020, 11, 966–975, doi:10.3762/bjnano.11.81

Graphical Abstract
  • metal deposition. Note that the nanowire was visible in the optical microscope due to its length of 70 µm, despite the small diameter. The distance between the contacts is 20 µm. A photograph of five contacted nanowires on a glass substrate after Cr/Au deposition and lift-off is presented in the inset
  • bulk (curve 1) and anodized (curve 2) GaAs samples measured at a temperature of 10 K. XRD pattern of the anodized GaAs(111)B sample. (A) Optical microscopy image of the opened regions in the photoresist on the glass substrate for deposition of the metal contacts on the selected GaAs nanowire. The inset
PDF
Album
Full Research Paper
Published 29 Jun 2020
Other Beilstein-Institut Open Science Activities