Search results

Search for "field effect transistor" in Full Text gives 45 result(s) in Beilstein Journal of Nanotechnology.

Active and fast charge-state switching of single NV centres in diamond by in-plane Al-Schottky junctions

  • Christoph Schreyvogel,
  • Vladimir Polyakov,
  • Sina Burk,
  • Helmut Fedder,
  • Andrej Denisenko,
  • Felipe Fávaro de Oliveira,
  • Ralf Wunderlich,
  • Jan Meijer,
  • Verena Zuerbig,
  • Jörg Wrachtrup and
  • Christoph E. Nebel

Beilstein J. Nanotechnol. 2016, 7, 1727–1735, doi:10.3762/bjnano.7.165

Graphical Abstract
  • Fermi level crosses this level. A control of the Fermi-level position can be performed either passively by the chemical control via surface termination with oxygen [8][9][10] or fluorine [14] or actively by an electrical control with structures such as a solution-gated field effect transistor [15], a
PDF
Album
Letter
Published 16 Nov 2016

Metal oxide-graphene field-effect transistor: interface trap density extraction model

  • Faraz Najam,
  • Kah Cheong Lau,
  • Cheng Siong Lim,
  • Yun Seop Yu and
  • Michael Loong Peng Tan

Beilstein J. Nanotechnol. 2016, 7, 1368–1376, doi:10.3762/bjnano.7.128

Graphical Abstract
  • interface trap states detrimentally affects the device drain current–gate voltage relationship Ids–Vgs. At the moment, there is no analytical method available to extract the interface trap distribution of metal-oxide-graphene field effect transistor (MOGFET) devices. The model presented here extracts the
  • that can later be used in drain current model is highlighted as a major advantage of the model. Keywords: drain current compact model; interface trap distribution; metal-oxide-graphene field-effect transistor (MOGFET); surface potential; Introduction Graphene has recently attracted a lot of attention
  • -graphene field-effect transistor (MOGFET) models do not take into account the detrimental effect of Dit states on device surface potential [4][5]. Zebrev et al. [6], recently presented a model that takes into account the effect of Dit states on the device current. A similar approach has been used by [7
PDF
Album
Full Research Paper
Published 30 Sep 2016

Synthesis and applications of carbon nanomaterials for energy generation and storage

  • Marco Notarianni,
  • Jinzhang Liu,
  • Kristy Vernon and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2016, 7, 149–196, doi:10.3762/bjnano.7.17

Graphical Abstract
  • for high frequency transistors. Pioneering work was completed in 2006 by Berger et al. [172] by fabricating a field-effect transistor (FET). They were able to show the Dirac nature and the high mobility (25,000 cm2 V−1 s−1) of graphene grown on SiC. An IBM research group recently reached the 300 GHz
PDF
Album
Review
Published 01 Feb 2016

High Ion/Ioff current ratio graphene field effect transistor: the role of line defect

  • Mohammad Hadi Tajarrod and
  • Hassan Rasooli Saghai

Beilstein J. Nanotechnol. 2015, 6, 2062–2068, doi:10.3762/bjnano.6.210

Graphical Abstract
  • Mohammad Hadi Tajarrod Hassan Rasooli Saghai Department of Electrical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran 10.3762/bjnano.6.210 Abstract The present paper casts light upon the performance of an armchair graphene nanoribbon (AGNR) field effect transistor in the
  • Ion/Ioff ratio in graphene transistors with ELDs enhances their applicability in digital devices. Keywords: field effect transistor; graphene; line defect; Introduction Graphene, a two-dimensional allotrope of carbon with the thickness of one atom, has attracted the attention of researchers because
  • of AGNR. However, no study has yet been conducted on the effect of the extended line defect on field effect transistors. In the present study, first, the device performance of an AGNR field effect transistor with ELD was investigated by employing self-consistent NEGF formalism and tight-binding
PDF
Album
Full Research Paper
Published 23 Oct 2015

Charge carrier mobility and electronic properties of Al(Op)3: impact of excimer formation

  • Andrea Magri,
  • Pascal Friederich,
  • Bernhard Schäfer,
  • Valeria Fattori,
  • Xiangnan Sun,
  • Timo Strunk,
  • Velimir Meded,
  • Luis E. Hueso,
  • Wolfgang Wenzel and
  • Mario Ruben

Beilstein J. Nanotechnol. 2015, 6, 1107–1115, doi:10.3762/bjnano.6.112

Graphical Abstract
  • considerably lower, 0.014, and the lifetime (τ) is an order of magnitude longer, 7.1 ns. The lifetimes were calculated by the luminescence decays, in solution and in the thin film, as shown in Figure 4. Field effect mobility in TFT devices From the electrical characteristics measured in a field-effect
  • transistor (FET) configuration, it is possible to obtain the charge carrier mobility of electrons and holes [32]. Therefore, in order to measure the field-effect mobility of Al(Op)3, thin film transistors (TFTs) based on Al(Op)3 were fabricated. A series of Al(Op)3-based TFTs were built with channel lengths
PDF
Album
Full Research Paper
Published 05 May 2015

Microwave assisted synthesis and characterisation of a zinc oxide/tobacco mosaic virus hybrid material. An active hybrid semiconductor in a field-effect transistor device

  • Shawn Sanctis,
  • Rudolf C. Hoffmann,
  • Sabine Eiben and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2015, 6, 785–791, doi:10.3762/bjnano.6.81

Graphical Abstract
  • Biology and Plant Virology, University of Stuttgart, 70550 Stuttgart, Germany 10.3762/bjnano.6.81 Abstract Tobacco mosaic virus (TMV) has been employed as a robust functional template for the fabrication of a TMV/zinc oxide field effect transistor (FET). A microwave based approach, under mild conditions
  • . Keywords: field-effect transistor; microwave synthesis; molecular precursor; thin film transistor; tobacco mosaic virus; zinc oxide; Introduction In recent years, the synthesis and fabrication of bio-inorganic nanostructures have gained tremendous importance for the fabrication of nanoscale devices with
  • according to these parameters. Field effect transistor (FET) properties In order to assess its FET properties, the wt TMV/ZnO hybrid material template was realised in a bottom gate, bottom contact FET geometry, by employing pre-fabricated FET substrates with external gold electrodes. All fabricated devices
PDF
Album
Supp Info
Video
Full Research Paper
Published 20 Mar 2015

Advances in NO2 sensing with individual single-walled carbon nanotube transistors

  • Kiran Chikkadi,
  • Matthias Muoth,
  • Cosmin Roman,
  • Miroslav Haluska and
  • Christofer Hierold

Beilstein J. Nanotechnol. 2014, 5, 2179–2191, doi:10.3762/bjnano.5.227

Graphical Abstract
  • the preferred architecture due to the low-power recovery and low noise performance. Examples of different back-gated device architectures employed for carbon nanotube field-effect transistor gas sensors. a) On-substrate, unpassivated devices, where the entire device is exposed to the analyte. The
PDF
Album
Review
Published 20 Nov 2014

Sequence-dependent electrical response of ssDNA-decorated carbon nanotube, field-effect transistors to dopamine

  • Hari Krishna Salila Vijayalal Mohan,
  • Jianing An and
  • Lianxi Zheng

Beilstein J. Nanotechnol. 2014, 5, 2113–2121, doi:10.3762/bjnano.5.220

Graphical Abstract
  • : carbon nanotube; deoxyribonucleic acid; dopamine; field-effect transistor; uric acid; Introduction Single-walled carbon nanotubes (SWCNTs) are excellent chemical/biological sensing materials because of their ultra-high sensitivity, fast response, and size compatibility, as compared to traditional
  • as a receptor capable of specific and selective binding with the target analyte. ssDNA-decorated, individually semiconducting SWCNTs in a field-effect transistor (FET) configuration merge the molecular recognition diversity of ssDNA with the excellent electronic properties of SWCNT to provide a fast
PDF
Album
Full Research Paper
Published 13 Nov 2014

Effect of channel length on the electrical response of carbon nanotube field-effect transistors to deoxyribonucleic acid hybridization

  • Hari Krishna Salila Vijayalal Mohan,
  • Jianing An,
  • Yani Zhang,
  • Chee How Wong and
  • Lianxi Zheng

Beilstein J. Nanotechnol. 2014, 5, 2081–2091, doi:10.3762/bjnano.5.217

Graphical Abstract
  • .5.217 Abstract A single-walled carbon nanotube (SWCNT) in a field-effect transistor (FET) configuration provides an ideal electronic path for label-free detection of nucleic acid hybridization. The simultaneous influence of more than one response mechanism in hybridization detection causes a variation
  • variation trend in response to the newly defined parameters. Keywords: biosensor; carbon nanotubes; channel length; field-effect transistor; hybridization; mobility; nucleic acid; Introduction Detection of nucleic acids such as deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) is an important issue in
  • chemical stability favors the use of various functionalization schemes to improve the specificity and selectivity during sensing [14][15]. For instance, SWCNTs used in a field-effect transistor (FET) configuration are capable of electronically detecting nucleic acids because of their ability to respond to
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2014

Optical properties and electrical transport of thin films of terbium(III) bis(phthalocyanine) on cobalt

  • Peter Robaschik,
  • Pablo F. Siles,
  • Daniel Bülz,
  • Peter Richter,
  • Manuel Monecke,
  • Michael Fronk,
  • Svetlana Klyatskaya,
  • Daniel Grimm,
  • Oliver G. Schmidt,
  • Mario Ruben,
  • Dietrich R. T. Zahn and
  • Georgeta Salvan

Beilstein J. Nanotechnol. 2014, 5, 2070–2078, doi:10.3762/bjnano.5.215

Graphical Abstract
  • years. Terbium(III) bis(phthalocyanine) (TbPc2) is an excellent candidate to provide all the necessary features for molecular spintronics, as it is both an organic semiconductor and a single molecule magnet (SMM). TbPc2 was previously implemented in an organic field effect transistor (OFET) as a hole
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2014

Numerical investigation of the effect of substrate surface roughness on the performance of zigzag graphene nanoribbon field effect transistors symmetrically doped with BN

  • Majid Sanaeepur,
  • Arash Yazdanpanah Goharrizi and
  • Mohammad Javad Sharifi

Beilstein J. Nanotechnol. 2014, 5, 1569–1574, doi:10.3762/bjnano.5.168

Graphical Abstract
  • ; substrate roughness; zigzag graphene nanoribbon field effect transistor (ZGNRFET); Introduction Field effect transistors (FETs) with a 10 nm gate length are stipulated by the International Technology Roadmap for Semiconductors (ITRS) for the year 2020 [1]. Regarding the Si scaling limits, it is obvious
PDF
Album
Full Research Paper
Published 17 Sep 2014

An analytical approach to evaluate the performance of graphene and carbon nanotubes for NH3 gas sensor applications

  • Elnaz Akbari,
  • Vijay K. Arora,
  • Aria Enzevaee,
  • Mohamad. T. Ahmadi,
  • Mehdi Saeidmanesh,
  • Mohsen Khaledian,
  • Hediyeh Karimi and
  • Rubiyah Yusof

Beilstein J. Nanotechnol. 2014, 5, 726–734, doi:10.3762/bjnano.5.85

Graphical Abstract
  • structure of these allotropes. A mathematical model is proposed with a clear purpose to acquire an analytical understanding of the field-effect-transistor (FET) based gas detection mechanism. The conductance change in the CNT/graphene channel resulting from the chemical reaction between the gas and channel
  • quite similar to the conventional metal-oxide semiconductor field effect transistor (MOSFET), which comprises source and drain electrodes with the gate insulator inducing the channel of carriers and a silicon back gate [22][23] to augment the carrier density or adjust the threshold voltage. A CNT
PDF
Album
Full Research Paper
Published 28 May 2014

Analytical development and optimization of a graphene–solution interface capacitance model

  • Hediyeh Karimi,
  • Rasoul Rahmani,
  • Reza Mashayekhi,
  • Leyla Ranjbari,
  • Amir H. Shirdel,
  • Niloofar Haghighian,
  • Parisa Movahedi,
  • Moein Hadiyan and
  • Razali Ismail

Beilstein J. Nanotechnol. 2014, 5, 603–609, doi:10.3762/bjnano.5.71

Graphical Abstract
  • of graphene in graphene-based devices. A schematic of a graphene-based EGFET including the bias configuration (three-electrode electrochemical cell). A cross-section of graphene-based electrolyte-gated field effect transistor, together with the equivalent electrical circuit. The proposed model of
PDF
Album
Full Research Paper
Published 09 May 2014

Ellipsometry and XPS comparative studies of thermal and plasma enhanced atomic layer deposited Al2O3-films

  • Jörg Haeberle,
  • Karsten Henkel,
  • Hassan Gargouri,
  • Franziska Naumann,
  • Bernd Gruska,
  • Michael Arens,
  • Massimo Tallarida and
  • Dieter Schmeißer

Beilstein J. Nanotechnol. 2013, 4, 732–742, doi:10.3762/bjnano.4.83

Graphical Abstract
  • /interfacial SiO2. This interface charge induces Coulomb scattering to the surface channel of a field effect transistor which reduces the electron mobility. In our experiments the interface charges cause the additional shift of the core level energies. The amount of such charges varies depending on the
PDF
Album
Full Research Paper
Published 08 Nov 2013

A highly pH-sensitive nanowire field-effect transistor based on silicon on insulator

  • Denis E. Presnov,
  • Sergey V. Amitonov,
  • Pavel A. Krutitskii,
  • Valentina V. Kolybasova,
  • Igor A. Devyatov,
  • Vladimir A. Krupenin and
  • Igor I. Soloviev

Beilstein J. Nanotechnol. 2013, 4, 330–335, doi:10.3762/bjnano.4.38

Graphical Abstract
  • , Moscow 119991, Russia Keldysh Institute of Applied Mathematics, Moscow 125047, Russia 10.3762/bjnano.4.38 Abstract Background: An experimental and theoretical study of a silicon-nanowire field-effect transistor made of silicon on insulator by CMOS-compatible methods is presented. Results: A maximum
  • approach does not yield to the one of sensors built in bottom-up approaches. This provides a good background for the development of CMOS-compatible probes with primary signal processing on-chip. Keywords: charge/field sensor; field-effect transistor; nanowire; pH sensor; silicon-on-insulator
PDF
Album
Full Research Paper
Published 28 May 2013

High-resolution electrical and chemical characterization of nm-scale organic and inorganic devices

  • Pierre Eyben

Beilstein J. Nanotechnol. 2013, 4, 318–319, doi:10.3762/bjnano.4.35

Graphical Abstract
  • Pierre Eyben IMEC VZW, Kapeldreef 75, 3001 Leuven, Belgium 10.3762/bjnano.4.35 Almost ever since the advent of the microelectronics adventure, silicon-based MOSFET (metal–oxide–semiconductor field-effect transistor) technology has been largely dominant. However, for a few years now this
PDF
Editorial
Published 16 May 2013
Graphical Abstract
  • compared to its bulk counterpart, which is relevant to nanowire applications such as field-effect transistor sensors, and interconnectors. The influence of grain boundary scattering on the resistivity was predicted decades ago by Mayadas and Shatzkes, and depends on parameters such as electron mean free
PDF
Album
Review
Published 17 Dec 2012

Synthesis and electrical characterization of intrinsic and in situ doped Si nanowires using a novel precursor

  • Wolfgang Molnar,
  • Alois Lugstein,
  • Tomasz Wojcik,
  • Peter Pongratz,
  • Norbert Auner,
  • Christian Bauch and
  • Emmerich Bertagnolli

Beilstein J. Nanotechnol. 2012, 3, 564–569, doi:10.3762/bjnano.3.65

Graphical Abstract
  • doped NWs appeared to be [112] oriented with a specific resistivity of ρ = 198 mΩ·cm for p-type Si-NWs and ρ = 2.7 mΩ·cm for n-doped Si-NWs, revealing excellent dopant activation. Keywords: chemical vapour deposition; field-effect transistor; oligosilanes; radiation-induced nanostructures; silicon
PDF
Album
Full Research Paper
Published 31 Jul 2012

Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications

  • Yaron Paz

Beilstein J. Nanotechnol. 2011, 2, 845–861, doi:10.3762/bjnano.2.94

Graphical Abstract
  • quasi-perpendicular structure of the CNBTPA–DCNDBQT layer relative to the TiO2 surface was inferred, suggesting optimal orbital overlap between neighboring thiophene rings. The same substituted oligothiophene was then used to form a nanoscopic organic field-effect transistor (OFET), albeit not on TiO2
PDF
Album
Review
Published 20 Dec 2011

Current-induced dynamics in carbon atomic contacts

  • Jing-Tao Lü,
  • Tue Gunst,
  • Per Hedegård and
  • Mads Brandbyge

Beilstein J. Nanotechnol. 2011, 2, 814–823, doi:10.3762/bjnano.2.90

Graphical Abstract
  • , which eases the interpretation of the results. The model system we use is shown in Figure 1, in which a four-atom carbon chain is bridged between two graphene electrodes (L and R). We assume a field effect transistor setup, in which a gate potential, Vg, is applied to the system in addition to the bias
PDF
Album
Adds. & Corrs.
Full Research Paper
Published 16 Dec 2011
Other Beilstein-Institut Open Science Activities