Search results

Search for "flexible" in Full Text gives 305 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Cryogenic low-noise amplifiers for measurements with superconducting detectors

  • Ilya L. Novikov,
  • Boris I. Ivanov,
  • Dmitri V. Ponomarev and
  • Aleksey G. Vostretsov

Beilstein J. Nanotechnol. 2020, 11, 1316–1320, doi:10.3762/bjnano.11.115

Graphical Abstract
  • -temperature measurements at 48 K were made on the uppermost cooling stage of He-7 refrigerator with a Cryomech pulse tube cryocooler PT-405. Flexible shielded coaxial cables with SMA connectors were used for circuit biasing and for the input and output. We used an additional 40 dB attenuator at the SR780
PDF
Album
Full Research Paper
Published 02 Sep 2020

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • did not discern a difference in bacteria eradication with respect to the laser irradiation modality (continuous or pulsed). A flexible patch capable of rapidly treating subcutaneous wound infections upon NIR light irradiation was fabricated [68]. This patch combined the photothermal properties of gold
  • nanohole arrays with reduced graphene oxide nanosheets in a unique and flexible polyimide film for laser-gated pathogen inactivation. For the in vivo experiments, the patch was irradiated for 5 min with an LED array (940 nm, 10 W) and the patch surface temperature increased to 52 °C. These tests indicated
PDF
Album
Review
Published 31 Jul 2020

Light–matter interactions in two-dimensional layered WSe2 for gauging evolution of phonon dynamics

  • Avra S. Bandyopadhyay,
  • Chandan Biswas and
  • Anupama B. Kaul

Beilstein J. Nanotechnol. 2020, 11, 782–797, doi:10.3762/bjnano.11.63

Graphical Abstract
  • interaction while the intra-layer bonding is via the strong covalent interaction. This makes them inherently flexible and good candidates for flexible electronics [9], optoelectronics [10], and other related applications [11][12]. Amongst the TMDCs, WSe2 offers unique advantages for device applications, which
PDF
Album
Supp Info
Full Research Paper
Published 12 May 2020

A novel dry-blending method to reduce the coefficient of thermal expansion of polymer templates for OTFT electrodes

  • Xiangdong Ye,
  • Bo Tian,
  • Yuxuan Guo,
  • Fan Fan and
  • Anjiang Cai

Beilstein J. Nanotechnol. 2020, 11, 671–677, doi:10.3762/bjnano.11.53

Graphical Abstract
  • -generation large-area, light-weight, flexible, and stretchable optoelectronic applications [1][2], including flexible displays [3], electronic papers [4], sensors [5], and medical applications [6]. Fabricating high-performance OTFTs usually requires that the electrodes on the polymer template are precisely
  • of flexible displays, electronic papers, sensors, and medical applications, and provide new solutions for constructing large-area, light-weight, flexible, and stretchable optoelectronic applications. The experimental procedure for preparation of the PDMS/SiO2 composite template via dry blending: (a
PDF
Album
Full Research Paper
Published 20 Apr 2020

Exfoliation in a low boiling point solvent and electrochemical applications of MoO3

  • Matangi Sricharan,
  • Bikesh Gupta,
  • Sreejesh Moolayadukkam and
  • H. S. S. Ramakrishna Matte

Beilstein J. Nanotechnol. 2020, 11, 662–670, doi:10.3762/bjnano.11.52

Graphical Abstract
  • dimethylformamide are the best solvents [10]. The high boiling point of these dispersions (bp > 150 °C) restrict the usage in flexible devices along with issue that these solvents are also toxic (NFPA 704 health code above 2 [11]). There are reports in literature where MoO3 has been exfoliated in solvents with low
  • for the fabrication of flexible supercapacitors for wearable electronics. (a) UV–vis spectra of MoO3 dispersions obtained from different initial concentrations (Ci). The inset shows the final concentration as a function of the initial concentration; (b) UV–vis spectra of MoO3 dispersions obtained from
PDF
Album
Supp Info
Letter
Published 17 Apr 2020

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
  • microparticles (10–200 µm) fabricated via stop flow lithography have emerged as useful templates to form custom-shaped and flexible microcapsules of poly-ʟ-lysine (PLL) [36]. The shell was formed by diffusion of PLL into an oppositely charged hydrogel matrix, enabling an easy surface modification that can be
PDF
Album
Review
Published 27 Mar 2020

Preparation and in vivo evaluation of glyco-gold nanoparticles carrying synthetic mycobacterial hexaarabinofuranoside

  • Gennady L. Burygin,
  • Polina I. Abronina,
  • Nikita M. Podvalnyy,
  • Sergey A. Staroverov,
  • Leonid O. Kononov and
  • Lev A. Dykman

Beilstein J. Nanotechnol. 2020, 11, 480–493, doi:10.3762/bjnano.11.39

Graphical Abstract
  • conjugated to a much longer and flexible hydrophilic linker based on heptaethylene glycol (EG7), which was initially expected to allow for a better recognition of the glycan epitope on the surface of Ara6C2EG7NH2-GNPs 4 than on the surface of Ara6C2NH2-GNPs 3. The differences in hydrophilicity and rigidity
PDF
Album
Supp Info
Full Research Paper
Published 19 Mar 2020

Interfacial charge transfer processes in 2D and 3D semiconducting hybrid perovskites: azobenzene as photoswitchable ligand

  • Nicole Fillafer,
  • Tobias Seewald,
  • Lukas Schmidt-Mende and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2020, 11, 466–479, doi:10.3762/bjnano.11.38

Graphical Abstract
  • flexible organic molecule. Our next goal is to check if photoswitching is still possible after integration into the perovskite. Sasai et al. reported the photoswitching of azobenzene molecules in a 2D LHP tracking the optical properties of the molecules [41]. The photoswitching properties of the integrated
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2020

Understanding nanoparticle flow with a new in vitro experimental and computational approach using hydrogel channels

  • Armel Boutchuen,
  • Dell Zimmerman,
  • Abdollah Arabshahi,
  • John Melnyczuk and
  • Soubantika Palchoudhury

Beilstein J. Nanotechnol. 2020, 11, 296–309, doi:10.3762/bjnano.11.22

Graphical Abstract
  • equation for flow [30][31]. Fullstone et al. have used CFD in couple with flexible large-scale agent based modeling to predict NP distributions in vivo [32]. The size and shape of the NPs greatly influenced the adhesion and path of NPs within the vascular network. This CFD model predicted a higher
  • prepared with 1.5 mL of DI water were opaque and tougher compared to the other formulations and considered less suitable for forming flexible flow channels. In addition to mechanical flexibility, surface smoothness of the hydrogels was another key parameter in selecting a suitable material for fabricating
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2020

Phase inversion-based nanoemulsions of medium chain triglyceride as potential drug delivery system for parenteral applications

  • Eike Folker Busmann,
  • Dailén García Martínez,
  • Henrike Lucas and
  • Karsten Mäder

Beilstein J. Nanotechnol. 2020, 11, 213–224, doi:10.3762/bjnano.11.16

Graphical Abstract
  • system with a constant chemical potential and hence a constant osmotic pressure [16]. The aim of this study was to investigate the phase inversion-based production of a lipid nanocarrier without using phospholipids. Thus, instead of solid shelled nanocapsules, flexible nanoemulsions should be formed
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2020

Nonclassical dynamic modeling of nano/microparticles during nanomanipulation processes

  • Moharam Habibnejad Korayem,
  • Ali Asghar Farid and
  • Rouzbeh Nouhi Hefzabad

Beilstein J. Nanotechnol. 2020, 11, 147–166, doi:10.3762/bjnano.11.13

Graphical Abstract
  • experimental results were consistent with their proposed algorithm [21]. Wu et al. studied the automated manipulation of flexible nanowires using AFM. Although the automated manipulation of solid nanoparticles was already investigated, it was not generalizable to flexible nanowires due to the complexity of
  • flexible behavior. Also, for manipulating multiple nanowires, they presented a method based on graph theory that saved significant time owing to being independent from intermediate scanning [22]. Mahdjour Firouzi et al. tried to simulate the manipulation of biological nanoparticles using molecular dynamics
  • requires a material length scale parameter. This constant for the gold particle according to Fathalilou et al. [31] is considered to be l = 1.12 µm. The design parameters in modeling a gold nanoparticle are presented in Table 3. Since the cylindrical gold nanoparticle is flexible, the exerted forces lead
PDF
Album
Full Research Paper
Published 13 Jan 2020

Recent progress in perovskite solar cells: the perovskite layer

  • Xianfeng Dai,
  • Ke Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2020, 11, 51–60, doi:10.3762/bjnano.11.5

Graphical Abstract
  • coverage of the resulting perovskite layers. The possibility of applying the spray-coating technique to the roll-to-roll fabrication process for highly efficient, flexible large-area PSCs has been demonstrated. It is widely believed that by the use of spray coating a two-step deposition of precursor
PDF
Album
Review
Published 06 Jan 2020

Abrupt elastic-to-plastic transition in pentagonal nanowires under bending

  • Sergei Vlassov,
  • Magnus Mets,
  • Boris Polyakov,
  • Jianjun Bian,
  • Leonid Dorogin and
  • Vahur Zadin

Beilstein J. Nanotechnol. 2019, 10, 2468–2476, doi:10.3762/bjnano.10.237

Graphical Abstract
  • flexible polymer composite materials. Keywords: finite element method; mechanical properties; molecular dynamics; nanowires; Introduction Nanostructures comprised of noble metals with face centered cubic (FCC) crystal structure (Au, Ag and Cu according to the most common physical definition) prepared via
  • materials is expected to lead to mechanical properties different from those of regular monocrystals [7]. This fact must be taken into account when considering applications in which nanocrystals are subjected to mechanical deformation, for example, NW-based nanoswitches [8], nanoresonators [9] and flexible
  • electronics [10][11]. In the last case NWs are used as a conductive network in composition with flexible polymer materials such as polydimethylsiloxane (PDMS) [12][13]. The reliability of flexible devices in high-strain conditions will be governed by the mechanical reliability of the individual NWs inside the
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2019

Multiple Fano resonances with flexible tunablity based on symmetry-breaking resonators

  • Xiao bin Ren,
  • Kun Ren,
  • Ying Zhang,
  • Cheng guo Ming and
  • Qun Han

Beilstein J. Nanotechnol. 2019, 10, 2459–2467, doi:10.3762/bjnano.10.236

Graphical Abstract
  • components [19][20][21][22]. Fano resonances have been obtained in MDM-based waveguide–cavity coupled systems [23][24]. In recent years, multiple Fano resonances have aroused interest [25][26][27]. Compared with a single Fano resonance, multiple Fano resonances have more versatile and flexible applications
PDF
Album
Full Research Paper
Published 11 Dec 2019

Atomic force acoustic microscopy reveals the influence of substrate stiffness and topography on cell behavior

  • Yan Liu,
  • Li Li,
  • Xing Chen,
  • Ying Wang,
  • Meng-Nan Liu,
  • Jin Yan,
  • Liang Cao,
  • Lu Wang and
  • Zuo-Bin Wang

Beilstein J. Nanotechnol. 2019, 10, 2329–2337, doi:10.3762/bjnano.10.223

Graphical Abstract
  • distribution of molecules. However, many native tissues are not homogeneously stiff and it is not clear whether the controlled presentation of rigid and flexible material axes on the substrate governs the cytoskeletal and nuclear morphology [14]. Several techniques such as fluorescence microscopy [14][15
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2019

Design and facile synthesis of defect-rich C-MoS2/rGO nanosheets for enhanced lithium–sulfur battery performance

  • Chengxiang Tian,
  • Juwei Wu,
  • Zheng Ma,
  • Bo Li,
  • Pengcheng Li,
  • Xiaotao Zu and
  • Xia Xiang

Beilstein J. Nanotechnol. 2019, 10, 2251–2260, doi:10.3762/bjnano.10.217

Graphical Abstract
  • sulfur [6][7][8], constructing Li2Sn blocking interlayers [9][10][11], and applying functional separators [12][13][14][15]. Although there are many methods, the most common strategy is to combine sulfur with various carbon materials owing to their excellent conductivity and flexible nanostructures
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

A novel all-fiber-based LiFePO4/Li4Ti5O12 battery with self-standing nanofiber membrane electrodes

  • Li-li Chen,
  • Hua Yang,
  • Mao-xiang Jing,
  • Chong Han,
  • Fei Chen,
  • Xin-yu Hu,
  • Wei-yong Yuan,
  • Shan-shan Yao and
  • Xiang-qian Shen

Beilstein J. Nanotechnol. 2019, 10, 2229–2237, doi:10.3762/bjnano.10.215

Graphical Abstract
  • , Chongqing, 400715, China 10.3762/bjnano.10.215 Abstract Electrodes with high conductivity and flexibility are crucial to the development of flexible lithium-ion batteries. In this study, three-dimensional (3D) LiFePO4 and Li4Ti5O12 fiber membrane materials were prepared through electrospinning and directly
  • attributed to the high electronic and ionic conductivity provided by the 3D network structure of the self-standing electrodes. This design and preparation method for all-fiber-based lithium-ion batteries provides a novel strategy for the development of high-performance flexible batteries. Keywords: 3D
  • network; electrospinning; flexible electrodes; lithium ion battery; nanofiber; self-standing electrodes; Introduction With the rapid development of renewable energy technologies, electric vehicles and electronic devices, energy storage technology has become a focus of global research [1][2][3][4][5][6][7
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2019

Mannosylated brush copolymers based on poly(ethylene glycol) and poly(ε-caprolactone) as multivalent lectin-binding nanomaterials

  • Stefania Ordanini,
  • Wanda Celentano,
  • Anna Bernardi and
  • Francesco Cellesi

Beilstein J. Nanotechnol. 2019, 10, 2192–2206, doi:10.3762/bjnano.10.212

Graphical Abstract
  • mannose valencies (1, 2, 4, and 8). The structures, acronyms and valencies of the synthesized comb-like-glycopolymers are reported in Figure 1. The final glycopolymers have a flexible structure that should confer them the possibility to freely adjust the position of the mannose residues, matching the one
  • targeted, in order to obtain macromolecules of different valencies, while maintaining relatively short and flexible polymer chains, which minimize steric hindrance during lectin binding. Different percentages of PEG and PCL macromonomers were used, since the number of PCL side chains defined the final
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2019

Green and scalable synthesis of nanocrystalline kuramite

  • Andrea Giaccherini,
  • Giuseppe Cucinotta,
  • Stefano Martinuzzi,
  • Enrico Berretti,
  • Werner Oberhauser,
  • Alessandro Lavacchi,
  • Giovanni Orazio Lepore,
  • Giordano Montegrossi,
  • Maurizio Romanelli,
  • Antonio De Luca,
  • Massimo Innocenti,
  • Vanni Moggi Cecchi,
  • Matteo Mannini,
  • Antonella Buccianti and
  • Francesco Di Benedetto

Beilstein J. Nanotechnol. 2019, 10, 2073–2083, doi:10.3762/bjnano.10.202

Graphical Abstract
  • -hungry processes and they are not compatible with flexible devices. For example, materials such as copper indium gallium selenide (CIGS) and perovskite materials have raised several concerns. They contain rare/scarce raw materials and involve production and decommissioning processes which are
  • on flexible surfaces. Most of the efforts in this research field aim at the optimal trade-off between the solar energy conversion performance, scalability and sustainability of these nanocrystalline multinary sulfides [34][35]. To this end, researchers have produced many different polymorphic and
PDF
Album
Supp Info
Full Research Paper
Published 29 Oct 2019

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • ultrathin polyethylene terephthalate foils. The prepared sensors are extremely flexible (bending radii <3 µm) and light weight (≈3 g m−2). They are wearable and act as a magneto-sensitive skin with navigation and touchless control capabilities. Biosensors Because biosensors can provide crucial contributions
  • important targets in biosensor technology. Someya and co-workers developed a highly flexible organic amplifier to detect weak biosignals [107]. A highly conductive biocompatible gel composite made from multiwalled carbon nanotubes and aqueous hydrogel was integrated into a two-dimensional organic amplifier
  • pioneering approaches, the mechanical tuning of receptor molecules at interfacial media considers numerous candidates from continuously shifting molecular conformations (Figure 9) [189][190][191]. This method may use all available possibilities of flexible molecular structures. This methodology has not been
PDF
Album
Review
Published 16 Oct 2019

First principles modeling of pure black phosphorus devices under pressure

  • Ximing Rong,
  • Zhizhou Yu,
  • Zewen Wu,
  • Junjun Li,
  • Bin Wang and
  • Yin Wang

Beilstein J. Nanotechnol. 2019, 10, 1943–1951, doi:10.3762/bjnano.10.190

Graphical Abstract
  • the application as flexible electronic devices with almost constant conductance under small pressure, while armchair BP devices can serve as bidirectional pressure sensors. Real-space distributions of band alignments were explored to understand the different pressure-related properties. We fitted a
  • transition under axial strain [5][32]. The sensitivity to and the resilience against strain make BP an ideal material for strain-sensing electronics and flexible electronic devices. Xiao et al. fabricated few-layer BP nanosheets by chemical vapor transport [25], and observed a phase transition from an
  • %, which indicates a possible application of zigzag BP devices as flexible electronic circuits [14][16][45]. Thirdly, G increases dramatically at RC > 20% and finally reaches a comon value for all zigzag BP devices when RC = 30%. For the armchair BP devices shown in Figure 4b, an obvious difference can be
PDF
Album
Full Research Paper
Published 24 Sep 2019

The impact of crystal size and temperature on the adsorption-induced flexibility of the Zr-based metal–organic framework DUT-98

  • Simon Krause,
  • Volodymyr Bon,
  • Hongchu Du,
  • Rafal E. Dunin-Borkowski,
  • Ulrich Stoeck,
  • Irena Senkovska and
  • Stefan Kaskel

Beilstein J. Nanotechnol. 2019, 10, 1737–1744, doi:10.3762/bjnano.10.169

Graphical Abstract
  • contribution we analyze the influence of adsorption cycling, crystal size, and temperature on the switching behavior of the flexible Zr-based metal–organic framework DUT-98. We observe a shift in the gate-opening pressure upon cycling of adsorption experiments for micrometer-sized crystals and assign this to a
  • applications. This work thus extends the limited amount of studies on crystal size effects in flexible MOFs and hopefully motivates further investigations in this field. Keywords: crystal engineering; crystal size; flexible metal–organic frameworks; MOFs; water adsorption; Introduction In the past 20 years
  • flexible MOFs are being reported and their use in the areas of storage [4], separation [5] and sensing [6] of gases is being evaluated; their structural flexibility and adsorption behavior can be manipulated by applying chemical functionalization to the ligand [7] and metal cluster [8]. However, recent
PDF
Album
Supp Info
Full Research Paper
Published 20 Aug 2019

Tuning the performance of vanadium redox flow batteries by modifying the structural defects of the carbon felt electrode

  • Ditty Dixon,
  • Deepu Joseph Babu,
  • Aiswarya Bhaskar,
  • Hans-Michael Bruns,
  • Joerg J. Schneider,
  • Frieder Scheiba and
  • Helmut Ehrenberg

Beilstein J. Nanotechnol. 2019, 10, 1698–1706, doi:10.3762/bjnano.10.165

Graphical Abstract
  • energy sources during peak production and supply the stored energy to the grid during a depletion in the production. In this context, the all-vanadium redox flow battery (VRFB) is one of the most promising and flexible stationary electrical energy storage systems. Unlike Pb acid, Li-ion batteries or even
PDF
Album
Full Research Paper
Published 13 Aug 2019

Subsurface imaging of flexible circuits via contact resonance atomic force microscopy

  • Wenting Wang,
  • Chengfu Ma,
  • Yuhang Chen,
  • Lei Zheng,
  • Huarong Liu and
  • Jiaru Chu

Beilstein J. Nanotechnol. 2019, 10, 1636–1647, doi:10.3762/bjnano.10.159

Graphical Abstract
  • calculations provide a guide to optimizing parameter settings for the nondestructive diagnosis of flexible circuits. Defect detection of the embedded circuit pattern was also carried out, which indicates the capability of imaging tiny subsurface structures smaller than 100 nm by using CR-AFM. Keywords: atomic
  • force microscopy (AFM); contact resonance atomic force microscopy (CR-AFM); contact stiffness; defect detection; flexible circuits; subsurface imaging; Introduction With the rapid shrinkage of microelectronic devices, flexible circuits are intensively used while being functionalized as supercapacitors
  • [1][2][3][4], heaters [5][6][7][8] and temperature sensors [9][10][11][12]. Successful applications can be found in smart contact lenses, transparent electronic devices and deformable electronic skin, for instance. In general, a flexible circuit consists of a highly flexible thin polymer film as the
PDF
Album
Full Research Paper
Published 07 Aug 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
PDF
Album
Review
Published 30 Jul 2019
Other Beilstein-Institut Open Science Activities