Search results

Search for "focused ion beam" in Full Text gives 119 result(s) in Beilstein Journal of Nanotechnology.

Optical near-fields & nearfield optics

  • Alfred J. Meixner and
  • Paul Leiderer

Beilstein J. Nanotechnol. 2014, 5, 186–187, doi:10.3762/bjnano.5.19

Graphical Abstract
  • “optical antenna”. Since the fabrication of suitable structures with electron beam or focused ion beam lithography is a tedious and time-consuming task, the experiments are more and more supported by modeling with numerical methods such as Finite Difference Time Domain (FDTD) and Discrete Dipole
PDF
Editorial
Published 19 Feb 2014

Synthesis of embedded Au nanostructures by ion irradiation: influence of ion induced viscous flow and sputtering

  • Udai B. Singh,
  • D. C. Agarwal,
  • S. A. Khan,
  • S. Mohapatra,
  • H. Amekura,
  • D. P. Datta,
  • Ajay Kumar,
  • R. K. Choudhury,
  • T. K. Chan,
  • Thomas Osipowicz and
  • D. K. Avasthi

Beilstein J. Nanotechnol. 2014, 5, 105–110, doi:10.3762/bjnano.5.10

Graphical Abstract
  • ) measurements were performed on pristine and irradiated samples by using a 200 kV field emission TEM (JEM 2100F from JEOL) at TEM station, NIMS, Japan. XTEM samples are prepared by the focused ion beam (FIB) method by using a 30 keV Ga beam in a JEOL JEM 9320 FIB. Results and Discussions The XTEM image of
  • preparation of the XTEM sample by using focused ion beam. Since the cohesive energy of the metal (Au) is higher than the cohesive energy of the substrate (glass) plus the adhesive energy of the metal on glass, a discontinuous film of Au is formed because of dewetting. The XTEM image (Figure 2) of the sample
PDF
Album
Full Research Paper
Published 29 Jan 2014

Ultramicrosensors based on transition metal hexacyanoferrates for scanning electrochemical microscopy

  • Maria A. Komkova,
  • Angelika Holzinger,
  • Andreas Hartmann,
  • Alexei R. Khokhlov,
  • Christine Kranz,
  • Arkady A. Karyakin and
  • Oleg G. Voronin

Beilstein J. Nanotechnol. 2013, 4, 649–654, doi:10.3762/bjnano.4.72

Graphical Abstract
  • deposited onto a microelectrode using a focused ion beam gas-assisted process (Quanta 3D FEG, FEI Eindhoven). The circular Pt/C composite were deposited on 10 µm Pt electrodes and had a radius of approx. 6.5 µm and a thickness of approx. 150 nm (ion beam current: 300 pA and a dwell time of 200 ns) with a
PDF
Album
Full Research Paper
Published 14 Oct 2013

k-space imaging of the eigenmodes of sharp gold tapers for scanning near-field optical microscopy

  • Martin Esmann,
  • Simon F. Becker,
  • Bernard B. da Cunha,
  • Jens H. Brauer,
  • Ralf Vogelgesang,
  • Petra Groß and
  • Christoph Lienau

Beilstein J. Nanotechnol. 2013, 4, 603–610, doi:10.3762/bjnano.4.67

Graphical Abstract
  • experimental setup. Tapers as shown in Figure 1 are produced from single-crystalline gold wire by an electrochemical AC-etching technique followed by focused ion beam milling of a grating coupler [11]. Typical cone opening angles are between 20 and 30° and apex radii are well below 30 nm. These tips have a
  • ion beam milling of the grating couplers. Field enhancement at the taper apex was much more pronounced for the tip shown in panel a). Propagation constants kz of the three lowest eigenmodes of an infinitely long gold wire as a function of wire radius R. Displayed are the real (solid blue lines) and
  • method to spectroscopic studies of the coupling between nano-localized fields and single quantum objects. Such experiments are currently underway in our laboratory. Scanning electron micrographs of two gold tapers that were obtained by electrochemical AC-etching of annealed gold wires followed by focused
PDF
Album
Supp Info
Full Research Paper
Published 02 Oct 2013

Deformation-induced grain growth and twinning in nanocrystalline palladium thin films

  • Aaron Kobler,
  • Jochen Lohmiller,
  • Jonathan Schäfer,
  • Michael Kerber,
  • Anna Castrup,
  • Ankush Kashiwar,
  • Patric A. Gruber,
  • Karsten Albe,
  • Horst Hahn and
  • Christian Kübel

Beilstein J. Nanotechnol. 2013, 4, 554–566, doi:10.3762/bjnano.4.64

Graphical Abstract
  • -mortem TEM analysis were prepared either by focused ion beam (FIB) using a FEI Strata 400S DualBeam at 5 kV and 8 pA beam current for final polishing (sample ncPd 1) or by mechanical dimpling and Argon ion milling from the polyimide side at 2.5 kV in a PIPS (Gatan) (sample ncPd 2). FIB prepared samples
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2013

Digging gold: keV He+ ion interaction with Au

  • Vasilisa Veligura,
  • Gregor Hlawacek,
  • Robin P. Berkelaar,
  • Raoul van Gastel,
  • Harold J. W. Zandvliet and
  • Bene Poelsema

Beilstein J. Nanotechnol. 2013, 4, 453–460, doi:10.3762/bjnano.4.53

Graphical Abstract
  • open. As helium ions are light particles, sputtering processes are much less effective with HIM as compared to other focused ion beam (FIB) techniques that typically use gallium ions. Nevertheless, helium ion beam imaging can lead to considerable sample and, in particular surface, modifications. The
PDF
Album
Full Research Paper
Published 24 Jul 2013

Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam-induced deposition as studied by TEM

  • Xiaoxing Ke,
  • Carla Bittencourt,
  • Sara Bals and
  • Gustaaf Van Tendeloo

Beilstein J. Nanotechnol. 2013, 4, 77–86, doi:10.3762/bjnano.4.9

Graphical Abstract
  • -selectively decorated on the CNTs by using a focused ion beam (FIB) and subsequent chemical treatment [9]. However, these approaches either involve several steps or require masks to perform the site-specific deposition. Therefore, a more straightforward strategy to perform site-specific metal deposition is
PDF
Album
Supp Info
Full Research Paper
Published 04 Feb 2013

Diamond nanophotonics

  • Katja Beha,
  • Helmut Fedder,
  • Marco Wolfer,
  • Merle C. Becker,
  • Petr Siyushev,
  • Mohammad Jamali,
  • Anton Batalov,
  • Christopher Hinz,
  • Jakob Hees,
  • Lutz Kirste,
  • Harald Obloh,
  • Etienne Gheeraert,
  • Boris Naydenov,
  • Ingmar Jakobi,
  • Florian Dolde,
  • Sébastien Pezzagna,
  • Daniel Twittchen,
  • Matthew Markham,
  • Daniel Dregely,
  • Harald Giessen,
  • Jan Meijer,
  • Fedor Jelezko,
  • Christoph E. Nebel,
  • Rudolf Bratschitsch,
  • Alfred Leitenstorfer and
  • Jörg Wrachtrup

Beilstein J. Nanotechnol. 2012, 3, 895–908, doi:10.3762/bjnano.3.100

Graphical Abstract
  • other hand, one can use a focused ion beam (FIB) to fabricate a micrometer-sized hemisphere around a preselected diamond color center. In the following, both approaches are discussed. We first focus on a macroscopic solid immersion lens. Figure 6a shows a photograph of a macroscopic hemispherical lens
  • surface of a standard diamond sample. Due to the small size, thousands of microscopic lenses could be fabricated into a single diamond sample, and moreover, each lens could be fabricated precisely around a single fluorescent color center. A suitable fabrication technique is focused ion beam milling. We
  • with about 100 nm precision. Thereafter, a solid immersion lens with a radius corresponding to the depth of the color center is fabricated by using the focused ion beam. Figure 7c shows an example of such a microfabricated SIL. Note the cone around the SIL, which is fabricated in order not to cause
PDF
Album
Video
Full Research Paper
Published 21 Dec 2012

Sub-10 nm colloidal lithography for circuit-integrated spin-photo-electronic devices

  • Adrian Iovan,
  • Marco Fischer,
  • Roberto Lo Conte and
  • Vladislav Korenivski

Beilstein J. Nanotechnol. 2012, 3, 884–892, doi:10.3762/bjnano.3.98

Graphical Abstract
  • integration into spin-photo-electronic devices. Electron-beam and focused-ion-beam techniques are typically limited to feature sizes of tens of nanometres, if the features are to be well defined, and are rather inefficient for large-area nanopatterning since both methods employ series point-by-point pattern
PDF
Album
Full Research Paper
Published 19 Dec 2012
Graphical Abstract
  • two areas of fabrication and characterization, great advances have been reported in recent years. Methods to fabricate nanowires include top-down approaches such as optical and electron-beam lithography, and focused ion beam. More commonly applied bottom-up approaches are, e.g., vapour–liquid–solid
PDF
Album
Review
Published 17 Dec 2012

Ordered arrays of nanoporous gold nanoparticles

  • Dong Wang,
  • Ran Ji,
  • Arne Albrecht and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2012, 3, 651–657, doi:10.3762/bjnano.3.74

Graphical Abstract
  • by using laser interference lithography [15], focused ion beam (FIB) [17], or substrate conformal imprint lithography (SCIL) [19]. During the dewetting of metal films onto prepatterned substrates, the periodic structure of the prepatterned substrates modulates the local excess chemical potential by
PDF
Album
Supp Info
Full Research Paper
Published 13 Sep 2012

Nano-structuring, surface and bulk modification with a focused helium ion beam

  • Daniel Fox,
  • Yanhui Chen,
  • Colm C. Faulkner and
  • Hongzhou Zhang

Beilstein J. Nanotechnol. 2012, 3, 579–585, doi:10.3762/bjnano.3.67

Graphical Abstract
  • mechanical [4] properties. The gallium focused ion beam (FIB) microscope has been commercially available for twenty years. FIB microscopes have proven themselves as versatile tools with applications in a range of fields including biology [5], geology [6], materials science [7][8] and the semiconductor
  • microscope (HIM) is a new type of focused ion beam microscope. The HIM uses helium ions instead of gallium ions. Helium ions have a lower mass and therefore are less destructive than gallium ions. Helium ions are effectively non-contaminating. The source is a gas field ion source which does not suffer the
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2012

The morphology of silver nanoparticles prepared by enzyme-induced reduction

  • Henrik Schneidewind,
  • Thomas Schüler,
  • Katharina K. Strelau,
  • Karina Weber,
  • Dana Cialla,
  • Marco Diegel,
  • Roland Mattheis,
  • Andreas Berger,
  • Robert Möller and
  • Jürgen Popp

Beilstein J. Nanotechnol. 2012, 3, 404–414, doi:10.3762/bjnano.3.47

Graphical Abstract
  • the TEM investigations thin cross sections were prepared by means of the focused-ion-beam etching technique. For the cross-section images, samples were prepared on glass substrates with DNA concentrations of 10 µM. The silver reaction time was 5 min. Rutherford backscattering spectrometry (RBS) RBS is
PDF
Album
Full Research Paper
Published 18 May 2012

Electron-beam patterned self-assembled monolayers as templates for Cu electrodeposition and lift-off

  • Zhe She,
  • Andrea DiFalco,
  • Georg Hähner and
  • Manfred Buck

Beilstein J. Nanotechnol. 2012, 3, 101–113, doi:10.3762/bjnano.3.11

Graphical Abstract
  • deposition by the cross-linked MBP0-SAM, inducing defects by means of a focused ion beam seems like a promising strategy. An advantage of the scheme is that the metal surface exposed after lift-off is very smooth and, thus, very similar to template-stripped uniform films but with the additional feature of
PDF
Album
Full Research Paper
Published 06 Feb 2012

Plasmonic nanostructures fabricated using nanosphere-lithography, soft-lithography and plasma etching

  • Manuel R. Gonçalves,
  • Taron Makaryan,
  • Fabian Enderle,
  • Stefan Wiedemann,
  • Alfred Plettl,
  • Othmar Marti and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2011, 2, 448–458, doi:10.3762/bjnano.2.49

Graphical Abstract
  • linked with the optical function of the structures. Current techniques for the fabrication of plasmonic cavities include electrochemical growth combined with nanosphere lithography [25][35], electron-beam lithography [36], etching techniques [37][38][39][40] and focused ion beam milling [41][42][43]. The
  • techniques based on electron beam lithography and focused ion beam milling allow us to obtain structures of arbitrary shape and two-dimensional profile, but they are size limited and time consuming. Applications outside of sensing are also envisaged. Plasmonic resonators can not only confine light but can
PDF
Album
Full Research Paper
Published 16 Aug 2011

Formation of precise 2D Au particle arrays via thermally induced dewetting on pre-patterned substrates

  • Dong Wang,
  • Ran Ji and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2011, 2, 318–326, doi:10.3762/bjnano.2.37

Graphical Abstract
  • was observed on a thin metal film that had been patterned using focused ion beam (FIB) before the dewetting process [34]. However, the FIB patterning is a time-consuming process. Giermann and Thompson reported the formation of a 2D ordered Au nanoparticle array, with uniform size and aligned
PDF
Album
Video
Full Research Paper
Published 22 Jun 2011

Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: influence of particle–substrate chemistry and morphology, and of operating conditions

  • Samer Darwich,
  • Karine Mougin,
  • Akshata Rao,
  • Enrico Gnecco,
  • Shrisudersan Jayaraman and
  • Hamidou Haidara

Beilstein J. Nanotechnol. 2011, 2, 85–98, doi:10.3762/bjnano.2.10

Graphical Abstract
  • topography of the surface was chosen to study the effect of the geometrical surface confinement on the mobility and trajectory of the nanoparticles. Nanopatterned substrates shown in Figure 8 were chosen for that purpose. The surface patterns consist of an array of nanopits created by the focused ion beam
PDF
Album
Full Research Paper
Published 04 Feb 2011

Magnetic coupling mechanisms in particle/thin film composite systems

  • Giovanni A. Badini Confalonieri,
  • Philipp Szary,
  • Durgamadhab Mishra,
  • Maria J. Benitez,
  • Mathias Feyen,
  • An Hui Lu,
  • Leonardo Agudo,
  • Gunther Eggeler,
  • Oleg Petracic and
  • Hartmut Zabel

Beilstein J. Nanotechnol. 2010, 1, 101–107, doi:10.3762/bjnano.1.12

Graphical Abstract
  • F20 S-Twin instrument, atomic force and magnetic force microscopy (AFM, MFM) with an NT-MDT low temperature HV-Solver system. For cross sectional investigations of the composite film, TEM foils were extracted perpendicularly to the sample surface, by means of focused ion-beam technique, for which the
PDF
Album
Full Research Paper
Published 01 Dec 2010

Preparation, properties and applications of magnetic nanoparticles

  • Ulf Wiedwald and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2010, 1, 21–23, doi:10.3762/bjnano.1.4

Graphical Abstract
  • by e.g. Focused Ion Beam techniques [2] or evaporating/sputtering/laser ablating the desired material through nanomasks as e.g. provided by close packed or etched colloidal particles [3][4]. These methods can be applied even if one aims at spherical NPs by subsequent heating resulting in a surface
PDF
Video
Editorial
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities