Search results

Search for "gas sensing" in Full Text gives 70 result(s) in Beilstein Journal of Nanotechnology.

Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices

  • T. Anh Thu Do,
  • Truong Giang Ho,
  • Thu Hoai Bui,
  • Quang Ngan Pham,
  • Hong Thai Giang,
  • Thi Thu Do,
  • Duc Van Nguyen and
  • Dai Lam Tran

Beilstein J. Nanotechnol. 2018, 9, 771–779, doi:10.3762/bjnano.9.70

Graphical Abstract
  • improved response (τRes = 9 s) and recovery time (τRec = 39 s). The enhanced gas sensing performance and photocatalytic degradation processes are suggested to be attributed to not only the surface plasmon resonance effect, but also due to a Schottky barrier between plasmonic Au and ZnO structures
  • . Keywords: Au-decorated ZnO; carrier dynamics; gas sensors; photocatalyst; SPR effect; Introduction Inorganic transition metal oxide sensor devices have attracted attention in particular for improving gas sensing, energy conversion, electronics, photocatalysis and optoelectronic devices [1][2][3][4]. Among
  • them, ZnO nanostructures have particularly attracted attention for use in gas sensors due to their stability and relatively high sensitivity to target gases such as NO2, NO, CO, n-propane (C3H8), and NH3. In general, gas sensing devices based on ZnO structures are evidenced to be influenced by many
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2018

Sensing behavior of flower-shaped MoS2 nanoflakes: case study with methanol and xylene

  • Maryam Barzegar,
  • Masoud Berahman and
  • Azam Iraji zad

Beilstein J. Nanotechnol. 2018, 9, 608–615, doi:10.3762/bjnano.9.57

Graphical Abstract
  • process is known as one of the scalable methods to synthesize MoS2 nanostructures. In this study, the gas sensing properties of flower-shaped MoS2 nanoflakes, which were prepared from molybdenum trioxide (MoO3) by a facile hydrothermal method, have been studied. Material characterization was performed
  • using X-ray diffraction, Brunauer–Emmett–Teller surface area measurements, elemental analysis using energy dispersive X-ray spectroscopy, and field-emission scanning electron microscopy. The gas sensing characteristics were evaluated under exposure to various concentrations of xylene and methanol vapors
  • the most suitable candidates to use in gas sensing devices [14][15]. There are few reports on gas sensing properties of MoS2. Cantalini et al. [8] reported the response of few layer MoS2 films to NO2 at sub-ppm concentrations and reasonable sensitivity to 1 ppm NO2 with fast and reversible response at
PDF
Album
Full Research Paper
Published 16 Feb 2018

Gas-sensing behaviour of ZnO/diamond nanostructures

  • Marina Davydova,
  • Alexandr Laposa,
  • Jiri Smarhak,
  • Alexander Kromka,
  • Neda Neykova,
  • Josef Nahlik,
  • Jiri Kroutil,
  • Jan Drahokoupil and
  • Jan Voves

Beilstein J. Nanotechnol. 2018, 9, 22–29, doi:10.3762/bjnano.9.4

Graphical Abstract
  • electron microscopy, X-ray diffraction measurements and Raman spectroscopy. The gas sensing properties of the sensors based on i) NCD films, ii) ZnO nanorods, and iii) hybrid ZnO NRs/NCD structures were evaluated with respect to oxidizing (i.e., NO2, CO2) and reducing (i.e., NH3) gases at 150 °C. The
  • , materials with hybrid components have become more popular in the field of sensing because the hybridization and synergic effect of organic or inorganic materials could enhance the gas sensing properties. For example, Wang et al. fabricated a ring-like PdO–NiO composite with a lamellar structure and showed a
  • ) in order to investigate their gas sensing properties for nitrogen dioxide (NO2), ammonia (NH3) and carbon dioxide (CO2) at different concentration ranges of 25–100 ppm or 1250–5000 ppm. For this purpose we developed three different gas sensor devices based on i) NCD thin films, ii) ZnO nanorods, and
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2018

Functional materials for environmental sensors and energy systems

  • Michele Penza,
  • Anita Lloyd Spetz,
  • Albert Romano-Rodriguez and
  • Meyya Meyyappan

Beilstein J. Nanotechnol. 2017, 8, 2015–2016, doi:10.3762/bjnano.8.201

Graphical Abstract
  • scientific community, policy makers and social networks. The topics of this Thematic Series, based on 23 peer-reviewed articles, includes works on advanced gas sensing semiconducting materials, hybrid materials and nanocomposites for chemical sensing, catalytic sensing materials, metal oxides for chemical
PDF
Editorial
Published 26 Sep 2017

Effect of the fluorination technique on the surface-fluorination patterning of double-walled carbon nanotubes

  • Lyubov G. Bulusheva,
  • Yuliya V. Fedoseeva,
  • Emmanuel Flahaut,
  • Jérémy Rio,
  • Christopher P. Ewels,
  • Victor O. Koroteev,
  • Gregory Van Lier,
  • Denis V. Vyalikh and
  • Alexander V. Okotrub

Beilstein J. Nanotechnol. 2017, 8, 1688–1698, doi:10.3762/bjnano.8.169

Graphical Abstract
  • onto the inner shell too [4]. Although fluorinated CNTs are generally expected to be insulating, one-dimensional structures with a conducting shell surrounded by an insulating layer from the fluorinated carbon could find potential application in nanoelectronics and gas sensing [5]. The ability to
PDF
Album
Supp Info
Full Research Paper
Published 15 Aug 2017

Metal oxide nanostructures: preparation, characterization and functional applications as chemical sensors

  • Dario Zappa,
  • Angela Bertuna,
  • Elisabetta Comini,
  • Navpreet Kaur,
  • Nicola Poli,
  • Veronica Sberveglieri and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2017, 8, 1205–1217, doi:10.3762/bjnano.8.122

Graphical Abstract
  • process due to the desorption of gases, heat diffusion and mechanical stress. To reduce this effect as much as possible and thus have a stable baseline, we thermally stabilized (8 h) the samples at a selected target temperature prior to gas-sensing measurements. Different concentrations of target chemical
PDF
Album
Full Research Paper
Published 06 Jun 2017

Study of the correlation between sensing performance and surface morphology of inkjet-printed aqueous graphene-based chemiresistors for NO2 detection

  • F. Villani,
  • C. Schiattarella,
  • T. Polichetti,
  • R. Di Capua,
  • F. Loffredo,
  • B. Alfano,
  • M. L. Miglietta,
  • E. Massera,
  • L. Verdoliva and
  • G. Di Francia

Beilstein J. Nanotechnol. 2017, 8, 1023–1031, doi:10.3762/bjnano.8.103

Graphical Abstract
  • chemiresistor have been analysed upon NO2 exposure at standard ambient temperature and pressure. Moreover, as comparison, inkjet-printed sensors have been manufactured on standard insulating substrates, namely alumina (Al2O3), and silicon dioxide (Si/SiO2). They have been characterized through gas sensing and
  • printed materials onto different substrates on the gas sensing behavior. Inkjet-printed paper-based devices exhibited poorer performances with respect to those on standard substrates in terms of conductance variation. This can be ascribed to the peculiar arrangement of the deposited material
PDF
Album
Supp Info
Full Research Paper
Published 09 May 2017

CVD transfer-free graphene for sensing applications

  • Chiara Schiattarella,
  • Sten Vollebregt,
  • Tiziana Polichetti,
  • Brigida Alfano,
  • Ettore Massera,
  • Maria Lucia Miglietta,
  • Girolamo Di Francia and
  • Pasqualina Maria Sarro

Beilstein J. Nanotechnol. 2017, 8, 1015–1022, doi:10.3762/bjnano.8.102

Graphical Abstract
  • techniques, following a completely Si-technology-compatible approach. Chemiresistive devices have been realized by shaping the sensing layer in form of rectangular strips. In order to probe the gas-sensing capabilities of the fabricated devices, three standard pollutants have been chosen, namely NO2, NH3 and
  • . 3.5). In our case the estimated I(D)/I(D′) value is around 4.4, indicating that defects in the material are reasonably ascribed to the boundaries. Gas-sensing study In order to investigate the reliability of the fabrication process in terms of gas-sensing behaviour, two identical devices have been
PDF
Album
Full Research Paper
Published 08 May 2017

BTEX detection with composites of ethylenevinyl acetate and nanostructured carbon

  • Santa Stepina,
  • Astrida Berzina,
  • Gita Sakale and
  • Maris Knite

Beilstein J. Nanotechnol. 2017, 8, 982–988, doi:10.3762/bjnano.8.100

Graphical Abstract
  • ethylenevinyl acetate copolymer and carbon black (EVA–CB) were synthesized for sensing BTEX (benzene, toluene, ethylbenzene and xylene) vapours. The composites were characterized using atomic force microscopy (AFM) in an electroconductive mode. Gas sensing results show that EVA-CB can reproducibly detect BTEX
  • and that the response increases linearly with vapour concentration. Compared to gas-sensing measurements of gasoline vapours, the responses with toluene and ethylbenzene are different and can be explained by varying side chains of the benzene ring. Keywords: benzene detection; polymer–nanostructured
  • polymer-based nanostructured composite filled with electroconductive nanoparticles. Compared to gas sensors based on metal oxides this type of sensor ensures a much easier usage because polymer-based composites do not require high operating temperatures and work at room temperature. The gas-sensing
PDF
Album
Full Research Paper
Published 04 May 2017

Gas sensing properties of MWCNT layers electrochemically decorated with Au and Pd nanoparticles

  • Elena Dilonardo,
  • Michele Penza,
  • Marco Alvisi,
  • Riccardo Rossi,
  • Gennaro Cassano,
  • Cinzia Di Franco,
  • Francesco Palmisano,
  • Luisa Torsi and
  • Nicola Cioffi

Beilstein J. Nanotechnol. 2017, 8, 592–603, doi:10.3762/bjnano.8.64

Graphical Abstract
  • operating temperature range of 45–200 °C. The gas sensing results were related to the presence, type and loading of metal NPs used in the MWCNT functionalization. Compared to pristine MWCNTs, metal-decorated MWCNTs revealed a higher gas sensitivity, a faster response, a better stability, reversibility and
  • repeatability, and a low detection limit, where all of these sensing properties were controlled by the type and loading of the deposited metal catalytic NPs. Specifically, in the NO2 gas sensing experiments, MWCNTs decorated with the lowest Au content revealed the highest sensitivity at 150 °C, while MWCNTs
  • with the highest Pd loading showed the highest sensitivity when operated at 100 °C. Finally, considering the reported gas sensing results, sensing mechanisms have been proposed, correlating the chemical composition and gas sensing responses. Keywords: Au nanoparticle; chemiresistive gas sensor
PDF
Album
Full Research Paper
Published 10 Mar 2017

Graphene functionalised by laser-ablated V2O5 for a highly sensitive NH3 sensor

  • Margus Kodu,
  • Artjom Berholts,
  • Tauno Kahro,
  • Mati Kook,
  • Peeter Ritslaid,
  • Helina Seemen,
  • Tea Avarmaa,
  • Harry Alles and
  • Raivo Jaaniso

Beilstein J. Nanotechnol. 2017, 8, 571–578, doi:10.3762/bjnano.8.61

Graphical Abstract
  • Margus Kodu Artjom Berholts Tauno Kahro Mati Kook Peeter Ritslaid Helina Seemen Tea Avarmaa Harry Alles Raivo Jaaniso Institute of Physics, University of Tartu, W. Ostwald Street 1, EE50411 Tartu, Estonia 10.3762/bjnano.8.61 Abstract Graphene has been recognized as a promising gas sensing
  • between deposited V2O5 and graphene. Keywords: ammonia; electric conductivity; gas sensor; graphene; pulsed laser deposition; UV light activation; vanadium(V) oxide; Introduction Graphene, being a thin (semi)conducting material, is a promising gas sensing system. Highly sensitive response, down to
  • single molecule resolution, has been demonstrated with graphene-based devices under laboratory conditions [1][2][3]. However, in order to develop gas sensing applications working under real conditions, much effort has been dedicated to modification of graphene for improving its gas sensing
PDF
Album
Full Research Paper
Published 07 Mar 2017

Thin SnOx films for surface plasmon resonance enhanced ellipsometric gas sensing (SPREE)

  • Daniel Fischer,
  • Andreas Hertwig,
  • Uwe Beck,
  • Volkmar Lohse,
  • Detlef Negendank,
  • Martin Kormunda and
  • Norbert Esser

Beilstein J. Nanotechnol. 2017, 8, 522–529, doi:10.3762/bjnano.8.56

Graphical Abstract
  • fields like gas monitoring, safety and environmental applications. In this approach, a new gas sensing concept is investigated which combines the powerful adsorption probability of metal oxide conductive sensors (MOS) with an optical ellipsometric readout. This concept shows promising results to solve
  • adsorption on the surface. Conclusion: The gas sensing selectivity can be enhanced by tuning the properties of the thin film overcoating. A relation of the binding sites in the doped and undoped SnOx films and the gas sensing abilities for CO and C3H8 was found. This could open the path for optimized gas
  • sensing devices with different coated SPREE sensors. Keywords: doped tin oxide; ellipsometry; gas sensing; surface plasmon resonance; thin films; transparent conductive oxides; Introduction Gas sensors are an important tool for example in the fields of process monitoring, workplace safety or
PDF
Album
Full Research Paper
Published 28 Feb 2017

Role of oxygen in wetting of copper nanoparticles on silicon surfaces at elevated temperature

  • Tapas Ghosh and
  • Biswarup Satpati

Beilstein J. Nanotechnol. 2017, 8, 425–433, doi:10.3762/bjnano.8.45

Graphical Abstract
  • been observed in composite CuO–carbon nanotube and CuO–graphene systems [8][9]. CuO nanostructures find promising application in many other fields such as gas sensing, catalysis, and arsenic (As) removal in water purification [10][11][12]. Such differently shaped CuO nanostructures have been
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2017

Colorimetric gas detection by the varying thickness of a thin film of ultrasmall PTSA-coated TiO2 nanoparticles on a Si substrate

  • Urmas Joost,
  • Andris Šutka,
  • Meeri Visnapuu,
  • Aile Tamm,
  • Meeri Lembinen,
  • Mikk Antsov,
  • Kathriin Utt,
  • Krisjanis Smits,
  • Ergo Nõmmiste and
  • Vambola Kisand

Beilstein J. Nanotechnol. 2017, 8, 229–236, doi:10.3762/bjnano.8.25

Graphical Abstract
  • Valdena 3/7, 1048 Riga, Latvia Institute of Solid State Physics, University of Latvia, Kengaraga 8, Riga LV-1063, Latvia 10.3762/bjnano.8.25 Abstract Colorimetric gas sensing is demonstrated by thin films based on ultrasmall TiO2 nanoparticles (NPs) on Si substrates. The NPs are bound into the film by p
  • . The color response is rapid and changes reversibly within seconds of exposure. The sensing element is extremely simple and cheap, and can be fabricated by common coating processes. Keywords: colorimetric gas sensing; p-toluenesulfonic acid (PTSA); TiO2 nanoparticles; Introduction The apparent color
  • cost-effective colorimetric gas sensing system utilizing the absorption of the analyte into a PTSA-modified thin film based on TiO2 NPs. Volatile organic compounds absorb into the PTSA surrounding the nanoparticles, and subsequently cause a significant swelling of the films. Thus, the optical path
PDF
Album
Full Research Paper
Published 24 Jan 2017

Nanocrystalline TiO2/SnO2 heterostructures for gas sensing

  • Barbara Lyson-Sypien,
  • Anna Kusior,
  • Mieczylaw Rekas,
  • Jan Zukrowski,
  • Marta Gajewska,
  • Katarzyna Michalow-Mauke,
  • Thomas Graule,
  • Marta Radecka and
  • Katarzyna Zakrzewska

Beilstein J. Nanotechnol. 2017, 8, 108–122, doi:10.3762/bjnano.8.12

Graphical Abstract
  • heterojunctions for hydrogen sensing. Nanopowders of pure SnO2, 90 mol % SnO2/10 mol % TiO2, 10 mol % SnO2/90 mol % TiO2 and pure TiO2 have been obtained using flame spray synthesis (FSS). The samples have been characterized by BET, XRD, SEM, HR-TEM, Mössbauer effect and impedance spectroscopy. Gas-sensing
  • behavior begins to prevail upon water desorption/oxygen adsorption depends on the TiO2/SnO2 composition. The electrical resistance of sensing materials exhibits a power-law dependence on the H2 partial pressure. This allows us to draw a conclusion about the first step in the gas sensing mechanism related
  • to the adsorption of oxygen ions at the surface of nanomaterials. Keywords: gas sensors; hydrogen; n–n heterojunctions; nanomaterials; TiO2/SnO2; Introduction The TiO2–SnO2 system is extremely important for gas sensing as already proved by many works already published [1][2][3][4][5][6][7][8][9][10
PDF
Album
Full Research Paper
Published 12 Jan 2017

Sensitive detection of hydrocarbon gases using electrochemically Pd-modified ZnO chemiresistors

  • Elena Dilonardo,
  • Michele Penza,
  • Marco Alvisi,
  • Gennaro Cassano,
  • Cinzia Di Franco,
  • Francesco Palmisano,
  • Luisa Torsi and
  • Nicola Cioffi

Beilstein J. Nanotechnol. 2017, 8, 82–90, doi:10.3762/bjnano.8.9

Graphical Abstract
  • comparably good gas-sensing performance [21][22]. However, due to their high affinity toward HCs and low thermal stability, they are sometimes unstable and exhibit poor sensitivity [23][24]. In this context, metal oxides (MOx) have been proposed as promising active sensing layers because of their
  • advantageous properties such as good sensitivity under ambient conditions and easy preparation [25]. The fundamental process of the gas-sensing mechanism, holding the MOx-based sensing material at elevated temperatures above 300 °C, is the reaction of the surrounding gases with the oxygen of the MOx layer
  • but lower the activation energy. The sensing response of ZnO towards most of the toxic gases in general, and towards HC gases in particular, can be improved by surface deposition of noble metals. Sivapunniyam et al. [39] have reported the improvement of ZnO-nanorod-based HC gas sensing by doping the
PDF
Album
Full Research Paper
Published 10 Jan 2017

Diffusion of dilute gas in arrays of randomly distributed, vertically aligned, high-aspect-ratio cylinders

  • Wojciech Szmyt,
  • Carlos Guerra and
  • Ivo Utke

Beilstein J. Nanotechnol. 2017, 8, 64–73, doi:10.3762/bjnano.8.7

Graphical Abstract
  • nanocylinder arrays in solar cells and energy storage applications. Furthermore, gas sensing devices with high-aspect-ratio nanocylinder arrays and the growth of vertically aligned carbon nanotubes need the fundamental understanding and precise modelling of gas transport to optimise such processes. Keywords
  • ALD [14]. Arrays of nanocylinders are also used in gas sensing systems [15][16]. The increasing interest in surface functionalisation via gas phase techniques as well as gas sensing applications with high-aspect-ratio nanocylinder arrays has raised the need for the fundamental understanding and
  • of a great assistance in understanding quantitatively the process of gas transport in arrays of vertically aligned cylinders, such as nanotubes or nanowires of various materials. This is crucial for the optimisation of gas-based surface-functionalisation processes of such arrays as well as of the gas
PDF
Album
Full Research Paper
Published 09 Jan 2017

Nanostructured SnO2–ZnO composite gas sensors for selective detection of carbon monoxide

  • Paul Chesler,
  • Cristian Hornoiu,
  • Susana Mihaiu,
  • Cristina Vladut,
  • Jose Maria Calderon Moreno,
  • Mihai Anastasescu,
  • Carmen Moldovan,
  • Bogdan Firtat,
  • Costin Brasoveanu,
  • George Muscalu,
  • Ion Stan and
  • Mariuca Gartner

Beilstein J. Nanotechnol. 2016, 7, 2045–2056, doi:10.3762/bjnano.7.195

Graphical Abstract
  • . Highly toxic and flammable gases (CO, CO2, CH4, and C3H8) were tested under lab conditions (carrier gas was dry air) using a special gas sensing cell developed by our research group. The gas concentrations varied between 5 and 2000 ppm and the optimum working temperatures were in the range of 210–300 °C
  • (chemometrics) and advanced sensor operation techniques, such as temperature modulation [1]. In the past few years the use of composite sensors has yielded a lot of published work in the gas sensing domain [1][3][5][7][8][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33
  • program developed by Park Systems was used for displaying the images and subsequent statistical data analysis. Gas sensing measurements The gas sensing measurements were performed under lab conditions (carrier gas, dry air) using a custom built sensing system (see Figure 5). The cell includes a heating
PDF
Album
Full Research Paper
Published 22 Dec 2016

Nanostructured TiO2-based gas sensors with enhanced sensitivity to reducing gases

  • Wojciech Maziarz,
  • Anna Kusior and
  • Anita Trenczek-Zajac

Beilstein J. Nanotechnol. 2016, 7, 1718–1726, doi:10.3762/bjnano.7.164

Graphical Abstract
  • . Mickiewicza 30, Krakow 30-059, Poland 10.3762/bjnano.7.164 Abstract 2D TiO2 thin films and 3D flower-like TiO2-based nanostructures, also decorated with SnO2, were prepared by chemical and thermal oxidation of Ti substrates, respectively. The crystal structure, morphology and gas sensing properties of the
  • as H2 [7], NO2 [8], NOx [9], CO [10], NH3 [11], H2S [12], and VOCs (i.e., methanol, ethanol, propanol [13], and acetone [14]). The influence of effective surface area on the gas sensing properties of TiO2 thin films is also frequently observed and investigated [15]. TiO2 is a wide-band gap
  • sensitive material, and hence the higher the concentration of active surface oxygen adsorption centers. As a result, enhanced gas selectivity and sensitivity can be obtained. Since gas sensing properties depend on the method of synthesis and conditions applied in the preparation process, it is of crucial
PDF
Album
Full Research Paper
Published 15 Nov 2016

Enhanced detection of nitrogen dioxide via combined heating and pulsed UV operation of indium oxide nano-octahedra

  • Oriol Gonzalez,
  • Sergio Roso,
  • Xavier Vilanova and
  • Eduard Llobet

Beilstein J. Nanotechnol. 2016, 7, 1507–1518, doi:10.3762/bjnano.7.144

Graphical Abstract
  • light, which convey important information for the quantitative analysis of nitrogen dioxide. Keywords: dynamic gas sensing; indium oxide; nitrogen dioxide; pulsed UV light; UV-activated metal oxide; Introduction Technological barriers related to sensor performance and power consumption are currently
  • (XRD). As shown in Figure 2, the as-grown samples show the typical features of cubic In2O3. The XRD pattern for a commercially available, cubic phase indium oxide has been added for comparison. No peaks belonging to other materials or impurities were found. Gas sensing analysis Static sensor operation
PDF
Album
Full Research Paper
Published 25 Oct 2016

A composite structure based on reduced graphene oxide and metal oxide nanomaterials for chemical sensors

  • Vardan Galstyan,
  • Elisabetta Comini,
  • Iskandar Kholmanov,
  • Andrea Ponzoni,
  • Veronica Sberveglieri,
  • Nicola Poli,
  • Guido Faglia and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2016, 7, 1421–1427, doi:10.3762/bjnano.7.133

Graphical Abstract
  • used to quantify the elemental composition of the obtained materials. GO platelets were deposited onto Si substrates and characterized by Raman spectroscopy (WITec Micro-Raman Spectrometer Alpha 300, λ = 532 nm, 100× objective). To perform gas sensing measurements, the platinum electrodes and the
  • heater were deposited on the front and rear sides of the alumina substrate, respectively. During gas sensing tests, the conductance of the samples was monitored by means of the volt-amperometric technique and the applied voltage during the measurements was 1 V. We recorded the resistance of the
PDF
Album
Full Research Paper
Published 10 Oct 2016

Ammonia gas sensors based on In2O3/PANI hetero-nanofibers operating at room temperature

  • Qingxin Nie,
  • Zengyuan Pang,
  • Hangyi Lu,
  • Yibing Cai and
  • Qufu Wei

Beilstein J. Nanotechnol. 2016, 7, 1312–1321, doi:10.3762/bjnano.7.122

Graphical Abstract
  • morphology of In(NO3)3/PVP, In2O3/PANI composite nanofibers and pure PANI were investigated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and current–voltage (I–V) measurements. The gas sensing properties
  • of these materials towards NH3 vapor (100 to 1000 ppm) were measured at room temperature. The results revealed that the gas sensing abilities of In2O3/PANI composite nanofibers were better than pure PANI. In addition, the mass ratio of In2O3 to aniline and the p–n heterostructure between In2O3 and
  • to aniline (0, 1:1, 1:2 and 1:4) were prepared. Correspondingly, the four sensors were denoted as PANI sensor, In2O3/PANI-1 nanofibers sensor, In2O3/PANI-2 nanofibers sensor and In2O3/PANI-3 nanofibers sensor. Structural characterization and gas sensing test The crystal structure of In2O3 nanofibers
PDF
Album
Full Research Paper
Published 19 Sep 2016

NO gas sensing at room temperature using single titanium oxide nanodot sensors created by atomic force microscopy nanolithography

  • Li-Yang Hong and
  • Heh-Nan Lin

Beilstein J. Nanotechnol. 2016, 7, 1044–1051, doi:10.3762/bjnano.7.97

Graphical Abstract
  • Li-Yang Hong Heh-Nan Lin Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan 10.3762/bjnano.7.97 Abstract In this work, the fabrication of single titanium oxide nanodot (ND) resistive sensors for NO gas sensing at room temperature is reported. Two
  • atomic force microscopy nanolithography methods, nanomachining and nano-oxidation, are employed. A single titanium nanowire (NW) is created first along with contact electrodes and a single titanium oxide ND is subsequently produced in the NW. Gas sensing is realized by the photo-activation and the photo
  • potential application of single metal oxide NDs for gas sensing with a performance that is comparable with that of metal oxide nanowire gas sensors. Keywords: atomic force microscopy nanolithography; photo-activation; photo-recovery; resistive NO gas sensor; titanium oxide nanodot sensor; Introduction In
PDF
Album
Supp Info
Full Research Paper
Published 20 Jul 2016

Bacteriorhodopsin–ZnO hybrid as a potential sensing element for low-temperature detection of ethanol vapour

  • Saurav Kumar,
  • Sudeshna Bagchi,
  • Senthil Prasad,
  • Anupma Sharma,
  • Ritesh Kumar,
  • Rishemjit Kaur,
  • Jagvir Singh and
  • Amol P. Bhondekar

Beilstein J. Nanotechnol. 2016, 7, 501–510, doi:10.3762/bjnano.7.44

Graphical Abstract
  • , nanomaterial–biomolecule hybrid gas sensors. Keywords: amphipol; bacteriorhodopsin; bio-hybrid; gas sensing; ITO; ZnO nanostructure; Introduction Nanomaterial–biomolecule conjugates have emerged into one of the most rapidly developing and sought after areas in modern biomolecular device fabrication and
  • , SiO2) and polymers (e.g., PVA, gelatine) have been explored for photo–energy conversion, energy storage devices and gas sensing based on photo-conductive activity [12][14][20][21][22]. In parallel, ZnO and its hybrids have evolved as promising structures for sensing and semiconductor applications [23
  • sensing material [28]. Further, the advancement in concepts and techniques in nanotechnology resulted in the demonstration of the gas sensing capabilities of ZnO-based nanostructures [29][30]. Recently, researchers have explored innovative hybrid nanostructures based on the interaction of organic and
PDF
Album
Full Research Paper
Published 04 Apr 2016

Evaluation of gas-sensing properties of ZnO nanostructures electrochemically doped with Au nanophases

  • Elena Dilonardo,
  • Michele Penza,
  • Marco Alvisi,
  • Cinzia Di Franco,
  • Francesco Palmisano,
  • Luisa Torsi and
  • Nicola Cioffi

Beilstein J. Nanotechnol. 2016, 7, 22–31, doi:10.3762/bjnano.7.3

Graphical Abstract
  • , respectively. The pristine ZnO and Au@ZnO nanocomposites are proposed as active layer in chemiresistive gas sensors for low-cost processing. Gas-sensing measurements towards NO2 were collected at 300 °C, evaluating not only the Au-doping effect, but also the influence of the different ZnO nanostructures on the
  • gas-sensing properties. Keywords: Au-doped ZnO; chemiresistive gas sensor; electrosynthesis; NO2 gas sensor; ZnO nanostructures; Introduction Today the use of low-cost portable gas sensors is essential to detect and to monitor toxic, polluting and combustible gases for the environmental protection
  • active layer in low-cost chemiresistive gas sensors, due to their high sensitivity to gaseous analytes and easy production. The gas-sensing mechanism of MOS-based gas sensors is based on receptor and transducer functions [3]. Specifically, the first regards the recognition of a gaseous analyte by an
PDF
Album
Full Research Paper
Published 08 Jan 2016
Other Beilstein-Institut Open Science Activities