Search results

Search for "heavy metal" in Full Text gives 46 result(s) in Beilstein Journal of Nanotechnology.

Ultrathin water layers on mannosylated gold nanoparticles

  • Maiara A. Iriarte Alonso,
  • Jorge H. Melillo,
  • Silvina Cerveny,
  • Yujin Tong and
  • Alexander M. Bittner

Beilstein J. Nanotechnol. 2025, 16, 2183–2198, doi:10.3762/bjnano.16.151

Graphical Abstract
  • , Section S1). We used heavy metal staining in STEM on the nanometer scale, to distinguish the organic ligand shell from the gold core. The main method, however, was “noncontact” (AC mode) AFM. Its advantage lies in obtaining a very detailed surface topography through height images. This also includes
  • electrons in SEM (only the gold cores were observed as bright features). We recorded STEM images of dimanno-AuNPs deposited on a carbon-coated TEM grid to visualize the layer. We employed uranyl as a stain, a soluble heavy-metal cation that attaches to the hydrophilic parts of the organic coating, providing
PDF
Album
Supp Info
Full Research Paper
Published 04 Dec 2025

Prospects of nanotechnology and natural products for cancer and immunotherapy

  • Jan Filipe Andrade Santos,
  • Marcela Bernardes Brasileiro,
  • Pamela Danielle Cavalcante Barreto,
  • Ligiane Aranha Rocha and
  • José Adão Carvalho Nascimento Júnior

Beilstein J. Nanotechnol. 2025, 16, 1644–1667, doi:10.3762/bjnano.16.116

Graphical Abstract
  • nanoparticles are semiconductor structures smaller than typical nanoparticles, ranging from 2 to 10 nm in size. They are composed of heavy metal or inorganic material and exhibit fluorescent activity, making them commonly used for pharmaceutical applications [153][154]. The technology’s composition is
PDF
Album
Review
Published 22 Sep 2025

Dendrimer-modified carbon nanotubes for the removal and recovery of heavy metal ions from water

  • Thao Quynh Ngan Tran,
  • Huu Trung Nguyen,
  • Subodh Kumar and
  • Xuan Thang Cao

Beilstein J. Nanotechnol. 2025, 16, 1522–1532, doi:10.3762/bjnano.16.107

Graphical Abstract
  • Abstract Effective removal of trace heavy metal ions from aqueous bodies is a pressing problem and requires significant improvement in the area of absorbent material in terms of removal efficiency and sustainability. We propose an efficient strategy to enhance the adsorption efficiency of carbon nanotubes
  • spectroscopy was specifically used to confirm the Diels–Alder reaction on the surface of CNTs, and other characterization techniques (SEM, EDX, XRD, TGA, and FTIR) were applied to confirm the successive growth of the dendrimers. Highly dendrimerized CNTs were found to be more effective in removing heavy metal
  • involvement of harmful chemicals to pre-functionalize the CNTs with high loading but also provided an effective way to enhance the adsorption of heavy metal ions. Keywords: carbon nanotubes; deep eutectic solvent; dendrimers; Diels–Alder reaction; heavy metal ion adsorption; Introduction The contamination
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2025

Enhancing the therapeutical potential of metalloantibiotics using nano-based delivery systems

  • Alejandro Llamedo,
  • Marina Cano,
  • Raquel G. Soengas and
  • Francisco J. García-Alonso

Beilstein J. Nanotechnol. 2025, 16, 1350–1366, doi:10.3762/bjnano.16.98

Graphical Abstract
  • , improve biofilm penetration, and increase antibacterial efficacy, offering a promising strategy against resistant bacterial strains [96]. Recent developments in the design of heavy metal-free QDs along with biocompatible surface coatings have also significantly reduced concerns regarding toxicity, thus
PDF
Album
Review
Published 15 Aug 2025

Quantification of lead through rod-shaped silver-doped zinc oxide nanoparticles using an electrochemical approach

  • Ravinder Lamba,
  • Gaurav Bhanjana,
  • Neeraj Dilbaghi,
  • Vivek Gupta and
  • Sandeep Kumar

Beilstein J. Nanotechnol. 2025, 16, 422–434, doi:10.3762/bjnano.16.33

Graphical Abstract
  • heavy metal lead ions. The prepared lead sensor with ultrahigh sensitivity, based on silver-doped ZnO nanorods (Ag@ZnO NRs), was fabricated and characterized. The morphological, structural, compositional, and optical characteristics of the Ag@ZnO NRs were investigated using a variety of methods after
  • . Electrochemical techniques comparatively offer quick, portable, sensitive, and inexpensive basic equipment for heavy metal detection. The interactions between Ag@ZnO NRs and lead were studied using electrochemical methods. The prepared lead sensor using Ag@ZnO NRs show a very low detection limit and a very high
  • synthesized nanorods possess a crystalline structure, specifically a wurtzite hexagonal phase structure (space group: 186: P63mc) and exhibit advantageous optical properties. The integration of Ag into ZnO nanostructures enhances their optical characteristics and improves their ability to detect heavy metal
PDF
Album
Full Research Paper
Published 26 Mar 2025

Engineered PEG–PCL nanoparticles enable sensitive and selective detection of sodium dodecyl sulfate: a qualitative and quantitative analysis

  • Soni Prajapati and
  • Ranjana Singh

Beilstein J. Nanotechnol. 2025, 16, 385–396, doi:10.3762/bjnano.16.29

Graphical Abstract
  • that can be spectrophotometrically quantified. To assess the selectivity and specificity of the detection system towards SDS, a range of heavy metal ions (including Al3+, Cd2+, Zn2+, Hg2+, Ni2+, Cu2+, Cr3+, Pb2+, Fe3+, Co2+, and As3+) at a concentration of 1 ppm were introduced, along with various
  • surfactants such as CTAB, SDS, Tween 20, and Triton X-100 at a concentration of 0.1%. These ions and surfactants were chosen due to their relevance in environmental samples, and are example of common pollutants. The study found that while these heavy metal ions and other surfactants were present, the PEG–PCL
  • specificity of the PEG–PCL nanoparticle system towards SDS detection, further experiments were performed to observe color changes and the absorption spectra of NPs in the presence and absence of SDS and other metals and surfactants. This investigation is essential because heavy metal ions often coexist with
PDF
Album
Full Research Paper
Published 20 Mar 2025

Synthesis and the impact of hydroxyapatite nanoparticles on the viability and activity of rhizobacteria

  • Bedah Rupaedah,
  • Indrika Novella,
  • Atiek Rostika Noviyanti,
  • Diana Rakhmawaty Eddy,
  • Anna Safarrida,
  • Abdul Hapid,
  • Zhafira Amila Haqqa,
  • Suryana Suryana,
  • Irwan Kurnia and
  • Fathiyah Inayatirrahmi

Beilstein J. Nanotechnol. 2025, 16, 216–228, doi:10.3762/bjnano.16.17

Graphical Abstract
  • ]. nHA serves as a versatile agent in drug delivery [17], acts as a carrier for genes and proteins [18], and aids in immobilizing rhizobacteria for effective heavy metal removal [19]. In addition to its carrier capabilities, nHA exhibits exceptional attributes such as high biodegradability
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2025

Theoretical study of the electronic and optical properties of a composite formed by the zeolite NaA and a magnetite cluster

  • Joel Antúnez-García,
  • Roberto Núñez-González,
  • Vitalii Petranovskii,
  • H’Linh Hmok,
  • Armando Reyes-Serrato,
  • Fabian N. Murrieta-Rico,
  • Mufei Xiao and
  • Jonathan Zamora

Beilstein J. Nanotechnol. 2025, 16, 44–53, doi:10.3762/bjnano.16.5

Graphical Abstract
  • ], heavy metal removal [11][12], sensor technologies [13][14][15][16], and biomedical applications [17]. Nanoscale materials represent a thriving field of research with a wide range of potential applications. Today, it is generally recognized that properties like hardness, reactivity, toxicity, and optical
PDF
Album
Full Research Paper
Published 17 Jan 2025

Facile synthesis of size-tunable L-carnosine-capped silver nanoparticles and their role in metal ion sensing and catalytic degradation of p-nitrophenol

  • Akash Kumar,
  • Ridhima Chadha,
  • Abhishek Das,
  • Nandita Maiti and
  • Rayavarapu Raja Gopal

Beilstein J. Nanotechnol. 2024, 15, 1576–1592, doi:10.3762/bjnano.15.124

Graphical Abstract
  • -car-AgNPs for both heavy metal ion detection and catalytic degradation of P-NP, indicating their suitability for environmental monitoring and remediation applications. Further optimization and research are needed to expand their environmental applications and to understand their interaction mechanisms
  • with various contaminants. Keywords: catalysis; heavy metals; ʟ-carnosine; p-nitrophenol; silver nanoparticles; Introduction The persistent rise in environmental pollution, notably from heavy metal ions and organic pollutants, has propelled the development of innovative and efficient environmental
  • heavy metal ion monitoring in environmental samples involve complex analytical instrumental techniques such as atomic absorption spectroscopy, inductively coupled plasma mass spectrometry, and high-performance liquid chromatography [8][9]. Environmental remediation of P-NP requires processes such as
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2024

Nanoarchitectonics with cetrimonium bromide on metal nanoparticles for linker-free detection of toxic metal ions and catalytic degradation of 4-nitrophenol

  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2024, 15, 1312–1332, doi:10.3762/bjnano.15.106

Graphical Abstract
  • , India Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India 10.3762/bjnano.15.106 Abstract Heavy metal ions and organic pollutants, such as 4-nitrophenol (4-NP), pose significant environmental and human health threats. Addressing these challenges necessitates using advanced
  • nanoparticle-based systems capable of efficient detection and degradation. However, conventional approaches utilizing strong capping agents like cetrimonium bromide (CTAB) on nanoparticles lead to limitations due to the rigid nature of CTAB. This restricts its utility in heavy metal detection and 4-NP
  • metals and efficient degradation of 4-NP. For enabling linker-free/ligand-free detection of heavy metal ions and catalytic degradation of 4-NP, CTAB was engineered as a versatile capping agent on gold and silver nanoparticles. Various factors, including nanoparticle characteristics such as shape, size
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2024

Introducing third-generation periodic table descriptors for nano-qRASTR modeling of zebrafish toxicity of metal oxide nanoparticles

  • Supratik Kar and
  • Siyun Yang

Beilstein J. Nanotechnol. 2024, 15, 1142–1152, doi:10.3762/bjnano.15.93

Graphical Abstract
  • from human studies, researchers have turned to zebrafish and their embryos for toxicological investigations. Zebrafish embryos are commonly used to identify environmental heavy metal pollution [13]. As a multicellular organism, zebrafish can offer more comprehensive insights into nanomaterials
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
  • alginate from marine sources adds to its appeal as a sustainable and renewable material for nanoparticle synthesis [103]. These nanoparticles have demonstrated potential in sensing applications, including temperature, humidity, water level, and various environmental pollutants. Heavy metal and volatile
  • organic compounds sensing: Metal sensing has become a crucial area of research because of the detrimental effects of heavy metal ions on living organisms and ecosystems [104][105]. Metal ions, such as silver, are commonly found in water systems because of industrial activities. In recent years, the use of
  • ]. This property allows the alginate-based nanoparticles to effectively bind and detect heavy metal ions present in water systems. The synthesis of alginate-based nanoparticles for metal sensing involves the incorporation of metallic nanoparticles, such as silver nanoparticles or zinc oxide nanoparticles
PDF
Album
Review
Published 22 Aug 2024

Multiscale modelling of biomolecular corona formation on metallic surfaces

  • Parinaz Mosaddeghi Amini,
  • Ian Rouse,
  • Julia Subbotina and
  • Vladimir Lobaskin

Beilstein J. Nanotechnol. 2024, 15, 215–229, doi:10.3762/bjnano.15.21

Graphical Abstract
  • containers, metal-based equipment, and kitchen utensils in maintaining product integrity. The figure further demonstrates the potential to introduce heavy metal contamination, including iron and aluminum, during processing and emphasizes the formation of a milk layer in form of a protein/lactose corona at
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2024

Metal-organic framework-based nanomaterials for CO2 storage: A review

  • Ha Huu Do,
  • Iqra Rabani and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 964–970, doi:10.3762/bjnano.14.79

Graphical Abstract
  • %) was achieved. Several explanations can be considered for this observation. First, the substitution of heavy metal ions (Zr4+) with lighter ones (Ti4+) could result in an increased specific surface area of UiO-66 (BET surface area: 1844 m2·g−1). Second, the shorter Ti–O bond lengths compared to Zr–O
PDF
Album
Review
Published 20 Sep 2023

Prediction of cytotoxicity of heavy metals adsorbed on nano-TiO2 with periodic table descriptors using machine learning approaches

  • Joyita Roy,
  • Souvik Pore and
  • Kunal Roy

Beilstein J. Nanotechnol. 2023, 14, 939–950, doi:10.3762/bjnano.14.77

Graphical Abstract
  • considerably high exposure TiO2 NPs may enter the food chain. Because of current industrialization processes, organisms are also exposed to heavy metal pollutants [7]. Emitted NPs may interact with the pollutants, and this may subsequently lead to bioaccumulation. The contamination of water and soil with heavy
  • increased the accumulation of Cd2+ in the ciliate Tetrahymen thermophila. Further, Tan et al. [12] showed increased uptake and retention of Cd2+ and Zn2+ adsorbed on TiO2 NPs in Daphnia magna. Heavy metal contamination affects plant growth and indirectly affects human health via the food chain. Heavy metals
  • was added to HK-2 cells in Hyclone DMEM medium supplemented with 10% fetal bovine serum (FBS) and 100 mg penicillin/streptomycin and maintained at 37 °C in the presence of 5% carbon dioxide. Nine concentrations of heavy metal salts were added to a constant amount of nano-TiO2 (25 µmol/L). The details
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2023

Facile preparation of Au- and BODIPY-grafted lipid nanoparticles for synergized photothermal therapy

  • Yuran Wang,
  • Xudong Li,
  • Haijun Chen and
  • Yu Gao

Beilstein J. Nanotechnol. 2022, 13, 1432–1444, doi:10.3762/bjnano.13.118

Graphical Abstract
  • including fabricating BODIPY with halogenated substitutions and modification of BODIPY with heavy metal atoms have been employed to decrease the radiative transitions and enhance the phototherapeutic effects. Halogenated BODIPY ensures efficient singlet-to-triplet intersystem crossing or non-radiative
PDF
Album
Full Research Paper
Published 02 Dec 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
PDF
Album
Review
Published 11 Nov 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
PDF
Album
Review
Published 05 Oct 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • surface. Hence, a high surface area and the ability to generate abundant functional group at the surface of the membrane makes electrospun membranes the perfect candidate for metal ion removal. CS is one of the most commonly used electrospun natural polymers in heavy metal ion removal. Amine functional
  • been developed by Zeng et al. for the removal of organic dyes and heavy metal ions from water. The HNTs has been modified with 3-aminopropyltriethoxysilane (APTES) in order to overcome the aggregation of HNTs owing to their high length-to-diameter ratio, but it has also enhanced the separation ability
PDF
Album
Review
Published 31 Jan 2022

Nanogenerator-based self-powered sensors for data collection

  • Yicheng Shao,
  • Maoliang Shen,
  • Yuankai Zhou,
  • Xin Cui,
  • Lijie Li and
  • Yan Zhang

Beilstein J. Nanotechnol. 2021, 12, 680–693, doi:10.3762/bjnano.12.54

Graphical Abstract
  • . Lee et al. proposed a based Hg2+ ion sensor based on ZnO nanowires and carbon nanotubes for detecting toxic pollutants [17]. The ZnO nanowire (NW) array acted as power source. When Hg2+ ions were detected, the system powered a light-emitting diode (LED). Li et al. designed a self-powered heavy metal
  • voltages according to the ion concentration, as shown in Figure 5d. The TENGs are a low-cost and environmentally friendly solution for detecting heavy metal ions. The kinetic energy generated by the flow of waste water is converted into electricity through a water-driven triboelectric nanogenerator (WD
  • -TENG). Thus, heavy metal ions in waste water can be removed without external power consumption. The self-powered sensor collects water quality information such as ion concentration in the water as a data source for hydrological analysis. PENG/TENG-based pressure sensors can accurately sense pressure
PDF
Album
Review
Published 08 Jul 2021

Nanoporous and nonporous conjugated donor–acceptor polymer semiconductors for photocatalytic hydrogen production

  • Zhao-Qi Sheng,
  • Yu-Qin Xing,
  • Yan Chen,
  • Guang Zhang,
  • Shi-Yong Liu and
  • Long Chen

Beilstein J. Nanotechnol. 2021, 12, 607–623, doi:10.3762/bjnano.12.50

Graphical Abstract
  • are primarily inorganic materials, such as metal oxides and sulfides [5]. Inorganic photocatalysts, however, have some inherent drawbacks. Harsh synthetic conditions, such as high pressure and temperature, are required [5]. Moreover, many reported inorganic photocatalysts contain heavy metal elements
PDF
Album
Review
Published 30 Jun 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
  • ]. A variety of plants such as Noccaea caerulescens, Pteris vittata, and Sedum plumbizincicola were previously demonstrated to have substantial heavy-metal detoxification capability [310][311][312]. One of the most significant factors in the detoxification process is the redox potential [313], which is
PDF
Album
Review
Published 25 Jan 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
  • range of applications to thin sections, similar to the transmission option in SEMs. In combination with the well-established heavy-metal staining techniques used in transmission electron microscopy (TEM), this would allow for ultrastructural research comparable to standard TEM. SRIM [57] simulations
PDF
Album
Review
Published 04 Jan 2021

Ultrasensitive detection of cadmium ions using a microcantilever-based piezoresistive sensor for groundwater

  • Dinesh Rotake,
  • Anand Darji and
  • Nitin Kale

Beilstein J. Nanotechnol. 2020, 11, 1242–1253, doi:10.3762/bjnano.11.108

Graphical Abstract
  • with a limit of detection (LOD) of 0.56 ng (2.78 pM), which perfectly describes its excellent performance over other reported techniques. Many researchers used nanoparticle-based sensors for the detection of heavy metal ions, but daily increasing usage and commercialization of nanoparticles are rapidly
  • the WHO limit of 3 μg/L. Keywords: BioMEMS; heavy metal ions (HMIs); limit of detection (LOD); microcantilevers; microfluidics; micro-electromechanical systems (MEMS); piezoresistive sensors; SAM (self-assembled monolayers); World Health Organization (WHO); Introduction Water is fundamentally
  • , cement manufacturing units, electroplating industry, manufacturing units of PVC, Ni–Cd batteries, fertilizers, pesticides, photovoltaic devices, soil, and sediments. Cadmium is a highly toxic heavy metal ion (HMI). Cadmium poisoning may cause fatigue, headaches, nausea, vomiting, abdominal cramps, bone
PDF
Album
Full Research Paper
Published 18 Aug 2020

Tailoring the stability/aggregation of one-dimensional TiO2(B)/titanate nanowires using surfactants

  • Atiđa Selmani,
  • Johannes Lützenkirchen,
  • Kristina Kučanda,
  • Dario Dabić,
  • Engelbert Redel,
  • Ida Delač Marion,
  • Damir Kralj,
  • Darija Domazet Jurašin and
  • Maja Dutour Sikirić

Beilstein J. Nanotechnol. 2019, 10, 1024–1037, doi:10.3762/bjnano.10.103

Graphical Abstract
  • because of their unique physicochemical properties compared to the bulk material. TNMs play an important role in various applications such as photocatalytic degradation of organic pollutants [1][2], sensors [3][4], solid oxide fuel cells [5], water purification [6][7], adsorption of radioactive and heavy
  • metal ions [8], as well as antibacterial applications [9]. Their various applications can be divided into “energy” and “environment” related categories. Many of these applications as well as TNM interactions in the environment depend on their properties and modifications [10]. Therefore, increased
PDF
Album
Supp Info
Full Research Paper
Published 13 May 2019
Other Beilstein-Institut Open Science Activities