Search results

Search for "hybrid material" in Full Text gives 53 result(s) in Beilstein Journal of Nanotechnology.

Template-assisted formation of microsized nanocrystalline CeO2 tubes and their catalytic performance in the carboxylation of methanol

  • Jörg J. Schneider,
  • Meike Naumann,
  • Christian Schäfer,
  • Armin Brandner,
  • Heiko J. Hofmann and
  • Peter Claus

Beilstein J. Nanotechnol. 2011, 2, 776–784, doi:10.3762/bjnano.2.86

Graphical Abstract
  • to yield microstructured ceria tubes, which are composed of nanocrystalline ceria particles. The PMMA template is removed from the organic/inorganic hybrid material by radio frequency (rf) plasma etching followed by calcination of the ceramic green-body fibres. Microsized ceria (CeO2) tubes, with a
PDF
Album
Full Research Paper
Published 30 Nov 2011

Ceria/silicon carbide core–shell materials prepared by miniemulsion technique

  • Lars Borchardt,
  • Martin Oschatz,
  • Robert Frind,
  • Emanuel Kockrick,
  • Martin R. Lohe,
  • Christoph P. Hauser,
  • Clemens K. Weiss,
  • Katharina Landfester,
  • Bernd Büchner and
  • Stefan Kaskel

Beilstein J. Nanotechnol. 2011, 2, 638–644, doi:10.3762/bjnano.2.67

Graphical Abstract
  • resulting PCS spheres are either pyrolyzed instantaneously or functionalized before pyrolysis. The latter results in a core–shell-structured hybrid material. A promising method for the synthesis of core–shell hybrid materials in general was described by Landfester et al. [36]. They created surface
  • structure. To achieve this, a sphere with a partially fractured shell (Figure 5A) was analyzed with regard to the distribution of cerium, oxygen and silicon. Figure 5C proves that cerium is only present in the shell of this hybrid material. The shell also contains a higher amount of oxygen than the core
PDF
Album
Video
Full Research Paper
Published 27 Sep 2011

Novel acridone-modified MCM-41 type silica: Synthesis, characterization and fluorescence tuning

  • Maximilian Hemgesberg,
  • Gunder Dörr,
  • Yvonne Schmitt,
  • Andreas Seifert,
  • Zhou Zhou,
  • Robin Klupp Taylor,
  • Sarah Bay,
  • Stefan Ernst,
  • Markus Gerhards,
  • Thomas J. J. Müller and
  • Werner R. Thiel

Beilstein J. Nanotechnol. 2011, 2, 284–292, doi:10.3762/bjnano.2.33

Graphical Abstract
  • fluorescence intensity. Conclusion We have presented a novel fluorescent organosilane bearing an acridone fluorophore and its successful transformation into a MCM-41 type material via co-condensation with TEOS. As predicted, the hybrid material shows a change in its fluorescence properties when non-covalently
  • modified through scandium complex formation. The miscibility of the organic precursor or its concentrated solution with an excess of the major silicon source has been determined to be crucial for the synthesis of the hybrid material given herein. Possibilities to vary the dye content by using different
PDF
Album
Full Research Paper
Published 09 Jun 2011
Other Beilstein-Institut Open Science Activities