Search results

Search for "hydrogen bond" in Full Text gives 62 result(s) in Beilstein Journal of Nanotechnology.

Spin relaxation in antiferromagnetic Fe–Fe dimers slowed down by anisotropic DyIII ions

  • Valeriu Mereacre,
  • Frederik Klöwer,
  • Yanhua Lan,
  • Rodolphe Clérac,
  • Juliusz A. Wolny,
  • Volker Schünemann,
  • Christopher E. Anson and
  • Annie K. Powell

Beilstein J. Nanotechnol. 2013, 4, 807–814, doi:10.3762/bjnano.4.92

Graphical Abstract
  • hydrogen bond from a (μ3-OH) ligand. The coordination is completed by two azido anions coordinated to the outer iron atoms (Fe(2) and Fe(4)). All four Fe ions are six-coordinate with distorted octahedral geometries, while the DyIII ions are eight-coordinate with coordination polyhedra that may best be
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2013

Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport

  • Pavel V. Komarov,
  • Pavel G. Khalatur and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2013, 4, 567–587, doi:10.3762/bjnano.4.65

Graphical Abstract
  • will not contribute significantly to the actual diffusion of protons in water phase. This picture is in agreement with both experimental observation [101] and theoretical work [102] which predicts that proton transfer along the hydrogen bond network should be essentially barrierless. Also, the proton
  • aqueous medium occur very fast, typically within 0.1–0.2 ps. Due to the further solvation, the ion pairs transform into shared proton complexes SO3−·H3O+·(H2O). The Zundel cations are then formed via the proton transfer reaction H3O+ + H2O → H5O2+. At the next step, the topological defects in the hydrogen
  • bond network occur in the form of Zundel–Zundel transformations. Also, the solvated hydronium complexes in the form of the Eigen cations exist as an intermediate state in Zundel–Eigen–Zundel proton exchange. The hydronium and the nearest water molecules constantly interchange the proton within a very
PDF
Album
Full Research Paper
Published 26 Sep 2013

Molecular dynamics simulations of mechanical failure in polymorphic arrangements of amyloid fibrils containing structural defects

  • Hlengisizwe Ndlovu,
  • Alison E. Ashcroft,
  • Sheena E. Radford and
  • Sarah A. Harris

Beilstein J. Nanotechnol. 2013, 4, 429–440, doi:10.3762/bjnano.4.50

Graphical Abstract
  • properties [23]. The SMD pulling geometries are designed to disrupt the stabilising hydrophobic core and backbone hydrogen bond networks from a variety of directions. We then assess how the mechanical response in the simulations is affected by doubling the length of the model fibrils, and how the mechanical
  •  5. All three fibril polymorphs demonstrate an anisotropic response to mechanical probing. Similar mean peak forces are required to break the fibrils when the hydrogen-bond networks are probed (“shear” and “stretch”). There are however, very distinct responses in the SMD simulations that probe the
  • demonstrates how the details imposed by polymorphic arrangements of the peptides in the fibril can determine the mechanical characteristics when a force is applied in a particular direction. Hydrogen-bond-network response: In the two pulling geometries (“shear” and “stretch”) that primarily interrogate the
PDF
Album
Full Research Paper
Published 04 Jul 2013

Nanoscopic surfactant behavior of the porin MspA in aqueous media

  • Ayomi S. Perera,
  • Hongwang Wang,
  • Tej B. Shrestha,
  • Deryl L. Troyer and
  • Stefan H. Bossmann

Beilstein J. Nanotechnol. 2013, 4, 278–284, doi:10.3762/bjnano.4.30

Graphical Abstract
  • surfaces has a disruptive effect on the water structure. Whereas the hydrogen bond network of water around an alkane of modest length (e.g., C6H14) is not distorted significantly, the solvation of extended hydrophobic structures has a disruptive effect on the water structure because it prohibits the
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2013

Dimer/tetramer motifs determine amphiphilic hydrazine fibril structures on graphite

  • Loji K. Thomas,
  • Nadine Diek,
  • Uwe Beginn and
  • Michael Reichling

Beilstein J. Nanotechnol. 2012, 3, 658–666, doi:10.3762/bjnano.3.75

Graphical Abstract
  • in Figure 4c). As evident from Figure 4c and Figure 5a, such a flipped molecule can form only one hydrogen bond with the neighbouring dimer and is tilted in the opposite direction yielding a step in the molecular contour of the hydrogen-bonded units. The loss of one hydrogen bond at defect sites is
  • fragment may result if the specific zigzag structure facilitates a hydrogen-bond closure from open hydrogen bonds, as indicated (unbonded H atoms at the top of the net and O atoms at the bottom) in Figure 5a. Fibril fragments can grow with different diameters depending on the number of molecules in the
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2012

Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications

  • Yaron Paz

Beilstein J. Nanotechnol. 2011, 2, 845–861, doi:10.3762/bjnano.2.94

Graphical Abstract
  • ,ω-dicyano substituted β,β'-dibutylquaterthiophene (DCNDBQT) molecules by forming a hydrogen bond between the cyano group of CNBTPA and a hydrogen on the thiophene ring of DCNDBQT, and by forming a hydrogen bond between the cyano group of DCNDBQT and a hydrogen on the thiophene ring of CNBTPA [90]. A
PDF
Album
Review
Published 20 Dec 2011

STM study on the self-assembly of oligothiophene-based organic semiconductors

  • Elena Mena-Osteritz,
  • Marta Urdanpilleta,
  • Erwaa El-Hosseiny,
  • Berndt Koslowski,
  • Paul Ziemann and
  • Peter Bäuerle

Beilstein J. Nanotechnol. 2011, 2, 802–808, doi:10.3762/bjnano.2.88

Graphical Abstract
  • moments of the molecules, which are oriented along the molecular axis (Figure 2, right; plain arrows). The carboxylic acid groups of two head-to-head arranged molecules are able to undergo hydrogen-bond formation, additionally stabilizing the monolayer (Figure 2, right). In the current image (Figure 2
PDF
Album
Full Research Paper
Published 07 Dec 2011
Graphical Abstract
  • associate with acidic molecules to form complexes by hydrogen-bond interaction. This simple acid–base complex chemistry has been exploited to control silica nanostructures in solution and further to achieve porphyrin functionalization of LPEI@silica powder materials with 5,10,15,20-tetrakis-(4
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2011

Towards a scalable and accurate quantum approach for describing vibrations of molecule–metal interfaces

  • David M. Benoit,
  • Bruno Madebene,
  • Inga Ulusoy,
  • Luis Mancera,
  • Yohann Scribano and
  • Sergey Chulkov

Beilstein J. Nanotechnol. 2011, 2, 427–447, doi:10.3762/bjnano.2.48

Graphical Abstract
  • as it contains 78 modes and the weak π–hydrogen bond requires correlated electronic structure methods. The computed harmonic frequency for the stretching mode of HF adsorbed on pyrene is 3661 cm−1 which is −112 cm−1 away from that of the free HF molecule, ω(HF) = 3773 cm−1 at this level of theory. At
PDF
Album
Full Research Paper
Published 10 Aug 2011

Intermolecular vs molecule–substrate interactions: A combined STM and theoretical study of supramolecular phases on graphene/Ru(0001)

  • Michael Roos,
  • Benedikt Uhl,
  • Daniela Künzel,
  • Harry E. Hoster,
  • Axel Groß and
  • R. Jürgen Behm

Beilstein J. Nanotechnol. 2011, 2, 365–373, doi:10.3762/bjnano.2.42

Graphical Abstract
  • limitation to specific adsorption sites in combination with the distinct positions of the hydrogen bond donors and acceptors within the molecule results in the formation of 1D chain structures (Figure 3b), similar to findings recently reported for the adsorption of PTCDI molecules on graphene/Rh(111) [18
PDF
Album
Full Research Paper
Published 12 Jul 2011

Novel acridone-modified MCM-41 type silica: Synthesis, characterization and fluorescence tuning

  • Maximilian Hemgesberg,
  • Gunder Dörr,
  • Yvonne Schmitt,
  • Andreas Seifert,
  • Zhou Zhou,
  • Robin Klupp Taylor,
  • Sarah Bay,
  • Stefan Ernst,
  • Markus Gerhards,
  • Thomas J. J. Müller and
  • Werner R. Thiel

Beilstein J. Nanotechnol. 2011, 2, 284–292, doi:10.3762/bjnano.2.33

Graphical Abstract
  • cm−1, 1609 cm−1) indicating an interaction of the carbonyl group with Lewis or Brønsted acidic or with hydrogen-bond-donating surface sites, which has previously been described for fluorescent probes such as Michler’s ketone [19]. This again changes after the reaction with Sc(OTf)3: A single C=O
PDF
Album
Full Research Paper
Published 09 Jun 2011

Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors

  • Alexander Weddemann,
  • Inga Ennen,
  • Anna Regtmeier,
  • Camelia Albon,
  • Annalena Wolff,
  • Katrin Eckstädt,
  • Nadine Mill,
  • Michael K.-H. Peter,
  • Jochen Mattay,
  • Carolin Plattner,
  • Norbert Sewald and
  • Andreas Hütten

Beilstein J. Nanotechnol. 2010, 1, 75–93, doi:10.3762/bjnano.1.10

Graphical Abstract
  • on dipole–dipole-, hydrogen bond- or van der Waals interactions. They do usually not show covalent characteristics. Tensides can be characterized by their head groups via which they interact with metal atoms on the surface of the particles. We distinguish between tensides such as TOPO which has a
PDF
Album
Review
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities