Search results

Search for "irradiation" in Full Text gives 503 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • B2 samples. This result again supports that employing B2 PMMA yields fewer residues and may help in avoiding post-transfer treatments for advanced PMMA residue cleaning of graphene, such as annealing and ion beam irradiation [32]. The graph of the G band shift (Supporting Information File 1, Figure
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • -irradiation, mechanical deformation, or electrical and magnetic forces could influence the interactions and the formation kinetics of the interest structures. From the point view of materials, it would be interesting to use confined growth and assembly to assemble the coordination polymers that could satisfy
  • challenges to be tackled in the future. First, the detailed structures of the networks@crystal are difficult to investigate. The atomic structures of the composites are easily lost during observation because the coordination polymers are not stable under electron irradiation. Moreover, when the composites
PDF
Album
Review
Published 12 Aug 2022

Hierarchical Bi2WO6/TiO2-nanotube composites derived from natural cellulose for visible-light photocatalytic treatment of pollutants

  • Zehao Lin,
  • Zhan Yang and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2022, 13, 745–762, doi:10.3762/bjnano.13.66

Graphical Abstract
  • − units [22]. The hybridized O 2p and Bi 6s orbitals in the conduction band of the material contribute to the effective transfer of photoinduced electron−hole pairs, resulting in good photocatalytic properties under visible-light irradiation [23][24]. However, there is still room for improvement of the
  • reduction of Cr(VI) or degradation of rhodamine B (RhB) under visible-light irradiation (λ > 420 nm), they exhibited excellent photocatalytic activities. This was due to the unique hierarchical network structures of the composite as well as the uniformly and compactly built heterostructures in between TiO2
  • irradiation for t hours, after the achievement of the adsorption−desorption equilibrium, and at the initial moment (10.0 mg·L−1), respectively. The photocatalytic stabilities of the cellulose-derived Bi2WO6/TiO2-NT nanocomposites on the photocatalytic reduction of Cr(VI) or degradation of RhB were confirmed
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2022

Direct measurement of surface photovoltage by AC bias Kelvin probe force microscopy

  • Masato Miyazaki,
  • Yasuhiro Sugawara and
  • Yan Jun Li

Beilstein J. Nanotechnol. 2022, 13, 712–720, doi:10.3762/bjnano.13.63

Graphical Abstract
  • amplitude VSPV: Therefore, the electrostatic force under modulated laser irradiation is described as This equation can be divided into three parts: (Equation 5) is measured to determine the SPV by controlling VAC and nullifying the modulated force where the SPV is derived as Thus, AC-KPFM controls the AC
PDF
Album
Full Research Paper
Published 25 Jul 2022

Sodium doping in brookite TiO2 enhances its photocatalytic activity

  • Boxiang Zhuang,
  • Honglong Shi,
  • Honglei Zhang and
  • Zeqian Zhang

Beilstein J. Nanotechnol. 2022, 13, 599–609, doi:10.3762/bjnano.13.52

Graphical Abstract
  • exceeded four times that of P25 under visible light irradiation [8]. The degradation of methyl orange by brookite nanoflowers was much more efficient than that by anatase nanorods [9]. Moreover, the heterojunction of brookite TiO2 can enhance the photocatalytic activity (e.g., the rutile/brookite TiO2
  • over two typical samples (400 and 500 °C). The MB concentration versus the irradiation time was determined from the characteristic absorption peak of MB (≈665 nm) acquired by a UV–vis spectrophotometer, as shown in Figure 1c. Samples calcinated at 300 and 400 °C exhibited an excellent photocatalytic
  • activity, and more than 90% of MB was decolorized after UV light irradiation for 30 min. However, for the samples calcinated at 500 and 600 °C, it takes about 60 min to degrade 90% of MB. Moreover, the photodegradation rate of MB by the samples was quantitatively characterized based on pseudo first-order
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • ) [12] was carried out as well. Chou et al. employed a simple and rapid method, namely pulsed laser-induced photolysis to develop Au NPs on the surface of ZnO nanorods fabricated by the sol–gel method (Figure 2c,d) [38]. Various irradiation times were tested, indicating that a short irradiation time was
  • photochemical reduction [32], pulsed laser-induced photolysis [38], or controlled decoration with Ag NPs using an electroless plating technique [44]. Photochemical synthesis permits the control of nucleation and growth rate without using organic additives. Xu et al. employed laser irradiation of ZnO nanorods in
  • milli-Q water to the freshly prepared Ag nanowire solution [55]. A higher photocatalytic activity was shown for the Ag–ZnO core–shell particles compared to ZnO alone under solar light irradiation. SERS applications of ZnO-based nanostructures SERS is a powerful technique with promising applications for
PDF
Album
Review
Published 27 May 2022

Investigation of electron-induced cross-linking of self-assembled monolayers by scanning tunneling microscopy

  • Patrick Stohmann,
  • Sascha Koch,
  • Yang Yang,
  • Christopher David Kaiser,
  • Julian Ehrens,
  • Jürgen Schnack,
  • Niklas Biere,
  • Dario Anselmetti,
  • Armin Gölzhäuser and
  • Xianghui Zhang

Beilstein J. Nanotechnol. 2022, 13, 462–471, doi:10.3762/bjnano.13.39

Graphical Abstract
  • with a scanning tunneling microscope. As the irradiation dose was increased, the cross-linked regions continued to grow and a large number of subnanometer voids appeared. Their equivalent diameter is 0.5 ± 0.2 nm and the areal density is ≈1.7 × 1017 m−2. Supported by classical molecular dynamics
  • tailor surface properties [13][14][15][16][17][18][19][20]. These monolayers can be modified with lithographic tools, such as scanning probes [21], UV light, X-rays, ions, or electron beams [22][23][24]. A particularly versatile nanofabrication scheme utilizes electron irradiation of aromatic SAMs to
  • electron energy loss spectroscopy (HREELS) [53][54], Raman spectroscopy [55], and low-energy electron microscopy (LEEM) [56] as well as by theoretical analysis [57][58][59]. It is now well established that electron irradiation leads to cleavage of C–H and S–H bonds, followed by the formation of C–C bonds
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2022

A broadband detector based on series YBCO grain boundary Josephson junctions

  • Egor I. Glushkov,
  • Alexander V. Chiginev,
  • Leonid S. Kuzmin and
  • Leonid S. Revin

Beilstein J. Nanotechnol. 2022, 13, 325–333, doi:10.3762/bjnano.13.27

Graphical Abstract
  • deposition of YBaCuO films on a bicrystal substrate [25]. This problem can be mitigated by using ion irradiation [4][18][26] or step-edge junction technology [19], which will significantly increase the receiving properties and efficiency of the JJ series at high frequencies. While the integral received power
PDF
Album
Full Research Paper
Published 28 Mar 2022

Photothermal ablation of murine melanomas by Fe3O4 nanoparticle clusters

  • Xue Wang,
  • Lili Xuan and
  • Ying Pan

Beilstein J. Nanotechnol. 2022, 13, 255–264, doi:10.3762/bjnano.13.20

Graphical Abstract
  • diameter of 329.2 nm. They are highly absorptive at the near-infrared wavelength of 808 nm and efficient at locally converting light into heat. In vitro experiments using light-field microscopy and cell viability assay showed that Fe3O4 NPCs, in conjunction with near-infrared irradiation, effectively
  • MRI imaging, targeted drug delivery and hyperthermia therapy [8][9]. Hyperthermia therapy can be achieved by using either magnetic fields or NIR irradiation. Application of an external alternating magnetic field on these nanoparticles leads to the production of heat to mediate magnetic hyperthermia
  • needed to elicit sufficient hyperthermia by NIR irradiation, lingering magnetite may impose potential systemic toxicity. Thus, Fe3O4 single nanoparticles must be modified to reduce the dosage while keeping their therapeutic efficacy. In our earlier report, we synthesized Fe3O4 nanoparticle-containing
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2022

Impact of device design on the electronic and optoelectronic properties of integrated Ru-terpyridine complexes

  • Max Mennicken,
  • Sophia Katharina Peter,
  • Corinna Kaulen,
  • Ulrich Simon and
  • Silvia Karthäuser

Beilstein J. Nanotechnol. 2022, 13, 219–229, doi:10.3762/bjnano.13.16

Graphical Abstract
  • mechanism, that is, thermally activated hopping conduction in the case of Ru-terpyridine wire devices or sequential tunneling in nanoparticle-based devices. Furthermore, the conductance switching of nanoparticle-based devices upon 530 nm irradiation was attributed to plasmon-induced metal-to-ligand charge
  • devices upon irradiation at a wavelength of 490 to 540 nm and DC bias (USD) of 0.1 to 1.2 V (Figure 5a). Current vs time traces were recorded while the light source was switched on and off for a period needed until a stable current was recorded. The period was varied between 30 s and several minutes. The
  • ). The Ru(MPTP)2–AuNP devices, consisting of three to four AuNPs between the nanoelectrodes, were optically addressed by the same procedure, that is, 530 nm irradiation (USD = 1 V) and on/off switching with different frequencies and at bias voltages in the range from 0.1 to 1.1 V (Figure 5b and
PDF
Album
Supp Info
Full Research Paper
Published 15 Feb 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • minimize the risk of device-related infections, implants are usually coated with TiO2 nanotubes, which under UV irradiation, generate reactive oxygen species (ROS), resulting in the disinfection ability [13]. One of the most vital contributions of nanotechnology is the development of novel modes of drug
  • cells containing TiO2 nps undergo oxidative degeneration upon light irradiation under the influence of generated ROS and, therefore, these nps are considered as a potent photosensitizer in anticancer photodynamic therapy and the photodynamic inactivation of antibiotic-resistant bacteria [15]. TiO2
  • photocatalytic activity. Upon UV irradiation, the electrons in the valence band get excited to the conduction band, leading to the formation of electron–hole pairs and the generation of ROS. Subsequently, the generated holes (h+) convert water/hydroxide molecules to peroxide/hydroxyl radicals by oxidation. The
PDF
Album
Review
Published 14 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
PDF
Album
Review
Published 31 Jan 2022

Bacterial safety study of the production process of hemoglobin-based oxygen carriers

  • Axel Steffen,
  • Yu Xiong,
  • Radostina Georgieva,
  • Ulrich Kalus and
  • Hans Bäumler

Beilstein J. Nanotechnol. 2022, 13, 114–126, doi:10.3762/bjnano.13.8

Graphical Abstract
  • , the sterility of the final product is not guaranteed. Terminal sterilization of hemoglobin as well as particle suspension with standard methods of heat inactivation, UV-C irradiation, or gamma irradiation all led to a denaturation of the hemoglobin or to an enormous formation of methemoglobin due to
PDF
Album
Full Research Paper
Published 24 Jan 2022

Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review

  • Viet Van Pham,
  • Hong-Huy Tran,
  • Thao Kim Truong and
  • Thi Minh Cao

Beilstein J. Nanotechnol. 2022, 13, 96–113, doi:10.3762/bjnano.13.7

Graphical Abstract
  • morphology [25][26][27][28][29][30]. However, pure SnO2 suffers from some inherent drawbacks that limit its practical applications. With a wide bandgap (3.5–3.7 eV) [31][32], SnO2 can only be excited by UV irradiation. As a typical oxidation photocatalyst with the CB edge energy level, which is not conducive
  • % after 30 min under solar light irradiation, and the conversion efficacy from NO to NO2 is 1.66%. The high photocatalytic performance and the stability of SnO2 NPs under solar light is promising for potential application [69]. Recent approaches in the modification of SnO2 for photocatalytic NOx oxidation
  • and acetone [75]. The presence of graphene induces the formation of SnO2 and introduces Sn vacancies, which supports the electron transfer from the CB of Zn2SnO4 to oxygen under visible light irradiation (Figure 12). The authors only used a visible light LED with low power (3 W) and obtained a high
PDF
Album
Review
Published 21 Jan 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
  • presents a detailed computational protocol for the atomistic simulation of formation and growth of metal-containing nanostructures during focused electron beam-induced deposition (FEBID). The protocol is based upon irradiation-driven molecular dynamics (IDMD), a novel and general methodology for computer
  • simulations of irradiation-driven transformations of complex molecular systems by means of the advanced software packages MBN Explorer and MBN Studio. Atomistic simulations performed following the formulated protocol provide valuable insights into the fundamental mechanisms of electron-induced precursor
  • fragmentation and the related mechanism of nanostructure formation and growth using FEBID, which are essential for the further advancement of FEBID-based nanofabrication. The developed computational methodology is general and applicable to different precursor molecules, substrate types, and irradiation regimes
PDF
Album
Full Research Paper
Published 13 Oct 2021

Self-assembly of amino acids toward functional biomaterials

  • Huan Ren,
  • Lifang Wu,
  • Lina Tan,
  • Yanni Bao,
  • Yuchen Ma,
  • Yong Jin and
  • Qianli Zou

Beilstein J. Nanotechnol. 2021, 12, 1140–1150, doi:10.3762/bjnano.12.85

Graphical Abstract
  • exhibited high accumulation and ultra-long tumor retention effects. Importantly, animal experiments demonstrated complete eradication of tumor in mice after injection of PWG NPs and laser irradiation, demonstrating the efficacy of PWG nanoparticles in vivo. Indocyanine green (ICG) is widely used in
  • maintain the photothermal conversion efficiency up to 32.0%. After entering the tumor cells, the nanoparticles convert light into heat under a laser irradiation of 808 nm and effectively kill the tumor cells. Inspired by natural photosynthesis, artificial light systems consisting of photosensitizers and
PDF
Album
Review
Published 12 Oct 2021

Is the Ne operation of the helium ion microscope suitable for electron backscatter diffraction sample preparation?

  • Annalena Wolff

Beilstein J. Nanotechnol. 2021, 12, 965–983, doi:10.3762/bjnano.12.73

Graphical Abstract
  • values throughout the work against which the ion-irradiation-induced effects are evaluated. All values can be found in Table 1. Non-irradiated copper: electropolishing and Ar ion polishing To evaluate the effect of electropolishing and argon ion polishing on EBSD measurements, the Cu sample was polished
  • challenging stress/strain analysis. Irradiation of copper at 0° incidence angle To assess the effect of ion irradiation, the copper TEM lamella grids were irradiated with Ga ions using a Ga FIB/SEM or Ne ions using HIM. An ion dose of 3371 ions/nm2 was chosen to allow a comparison with a previously reported
  • study on Ga-induced phase transformations in copper [34]. A lower ion dose (2247 ions/nm2) was also evaluated as it corresponds to the dose that is achieved for commonly reported EBSD polishing time values over larger areas [39]. 30 keV Ga ion irradiation at 0° incidence angle The ion trajectory plot
PDF
Album
Supp Info
Full Research Paper
Published 31 Aug 2021

The role of convolutional neural networks in scanning probe microscopy: a review

  • Ido Azuri,
  • Irit Rosenhek-Goldian,
  • Neta Regev-Rudzki,
  • Georg Fantner and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2021, 12, 878–901, doi:10.3762/bjnano.12.66

Graphical Abstract
  • localization microscopy and wide-field images. High-quality, super-resolution images of microtubules, nuclear pores, and mitochondria can be reconstructed from low-resolution images with two orders of magnitude fewer frames than usual. This shortens acquisition time and reduces sample irradiation [119]. Deep
PDF
Album
Review
Published 13 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • . reported that when the distance between the cell and the MB was increased to 5.5 µm, the exerted shear stress on the cell membrane suddenly decreased [78]. Schlicher et al. exposed prostate cancer cells (DU145) to 24 kHz US irradiation to investigate the cavitation events and the changes in the cell
  • be improved by employing a nanotechnology-based hyperthermia approach [147]. The schematic illustration of this mechanism is presented in Figure 2. Free radical species generation Free radical molecules, such as ROS, NO, HO•, can be generated after the US irradiation interacts with specific
  • components in water-based media, which plays a role in both therapeutic and diagnostic applications [148][149]. Due to the toxicity of free radicals, some chemical compounds called sonosensitizers have been used as sonodynamic therapy agents which produce synergistic effects with US irradiation by generating
PDF
Album
Review
Published 11 Aug 2021

Recent progress in actuation technologies of micro/nanorobots

  • Ke Xu and
  • Bing Liu

Beilstein J. Nanotechnol. 2021, 12, 756–765, doi:10.3762/bjnano.12.59

Graphical Abstract
  • actuation Wang et al. [31] designed a needle-shaped liquid metal gallium nanoswimmer with controllable movement under near-infrared laser irradiation. Its propulsion force is mainly derived from the thermophoresis force generated by the temperature gradient along the longitudinal axis. Experiments show that
PDF
Album
Review
Published 20 Jul 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • irradiation effects, such as defect formation and ion implantation, are used to locally change the properties of the material, and at higher doses, nanofabrication is performed using localized material removal (by sputtering) or addition (by gas-assisted deposition). Sometimes, lower-dose irradiation effects
  • following, the field of materials modification research using the HIM is reviewed, subdivided into the following areas: 1. defect engineering, 2. ion implantation, 3. irradiation-induced restructuring, 4. resist-based lithography, 5. direct-write lithography/milling (including gas-assisted milling), and 6
  • either purposefully creating, or avoiding, varying degrees of disorder in a material. In the following, a range of applications based on these irradiation effects is described, starting with defect engineering studies at the lowest doses and then moving through higher-dose applications. The final
PDF
Album
Review
Published 02 Jul 2021

High-yield synthesis of silver nanowires for transparent conducting PET films

  • Gul Naz,
  • Hafsa Asghar,
  • Muhammad Ramzan,
  • Muhammad Arshad,
  • Rashid Ahmed,
  • Muhammad Bilal Tahir,
  • Bakhtiar Ul Haq,
  • Nadeem Baig and
  • Junaid Jalil

Beilstein J. Nanotechnol. 2021, 12, 624–632, doi:10.3762/bjnano.12.51

Graphical Abstract
  • effective synthetic method is still needed for high yields of impurity-free AgNWs. In order to synthesize silver nanowires several methods have been successfully developed, including ultraviolet irradiation, salt-free solution-based, salt-mediated solution-based, photo reduction, hydrothermal, wet-chemical
PDF
Album
Full Research Paper
Published 01 Jul 2021

Nanoporous and nonporous conjugated donor–acceptor polymer semiconductors for photocatalytic hydrogen production

  • Zhao-Qi Sheng,
  • Yu-Qin Xing,
  • Yan Chen,
  • Guang Zhang,
  • Shi-Yong Liu and
  • Long Chen

Beilstein J. Nanotechnol. 2021, 12, 607–623, doi:10.3762/bjnano.12.50

Graphical Abstract
  • and Honda [4] reported the first example of hydrogen production by photocatalytic water splitting in 1972, using TiO2 as the photocatalyst under ultraviolet-light irradiation. Since then, numerous semiconductors have been explored for photocatalytic hydrogen production (PHP) by water splitting, which
  • generate hydrogen under visible-light irradiation, for the first time. After that, g-C3N4 triggered substantial research interest [12][13][14]. Various strategies have been developed to improve the PHP activity of g-C3N4, such as introducing heterojunctions [15][16][17], copolymerization [18][19][20
  • edges of the frameworks to delicately tune the bandgaps of conjugated polymers. Among them, three polymers, that is, P2, P3, and P4 (Figure 2), showed suitable bandgaps of ca. 2.2 eV, and conferred HERs of 4.72, 9.15, and 2.90 μmol·h−1 (10 mg), respectively, under visible-light irradiation [46][47]. The
PDF
Album
Review
Published 30 Jun 2021

On the stability of microwave-fabricated SERS substrates – chemical and morphological considerations

  • Limin Wang,
  • Aisha Adebola Womiloju,
  • Christiane Höppener,
  • Ulrich S. Schubert and
  • Stephanie Hoeppener

Beilstein J. Nanotechnol. 2021, 12, 541–551, doi:10.3762/bjnano.12.44

Graphical Abstract
  • . Van Duyne and others elaborated the fundamental concept of the enhancement process, which was found to be mainly based on the amplification of the electric field component when the illuminating laser irradiation interacts with metal nanoparticles [6]. Suitable nanoparticles consist preferentially of
  • salt to metallic silver by microwave irradiation in the presence of ethanol utilized as reducing agent (Figure 1a). In practice, the functionalization of the substrates requires only the placement of the cleaned glass supports into a microwave vial containing an aqueous silver acetate precursor co
  • -mixed with ethanol. Subsequently, the closed microwave vials are subjected to microwave irradiation for two minutes. In the first phase of the microwave irradiation the temperature of the precursor mixture rapidly increases (see Supporting Information File 1, Figure S1 for the temperature diagram of a
PDF
Album
Supp Info
Full Research Paper
Published 11 Jun 2021
Other Beilstein-Institut Open Science Activities