Search results

Search for "localized surface plasmon resonance" in Full Text gives 60 result(s) in Beilstein Journal of Nanotechnology.

Patterning technique for gold nanoparticles on substrates using a focused electron beam

  • Takahiro Noriki,
  • Shogo Abe,
  • Kotaro Kajikawa and
  • Masayuki Shimojo

Beilstein J. Nanotechnol. 2015, 6, 1010–1015, doi:10.3762/bjnano.6.104

Graphical Abstract
  • substrate. This technique could contribute to the fabrication of plasmonic devices and other applications that require the controlled placement of gold nanoparticles on substrates. Keywords: electron beam; gold; nanoparticle array; Introduction Plasmonic waveguides and circuits utilizing localized surface
  • plasmon resonance (LSPR) are attracting attention for future optical transmission, sensor, and data processing devices. The development of these LSPR-based structures would lead to a reduction in the size of optical circuits and devices [1][2]. Light energy can be propagated through nanometer-sized wires
PDF
Album
Full Research Paper
Published 22 Apr 2015

Electromagnetic enhancement of ordered silver nanorod arrays evaluated by discrete dipole approximation

  • Guoke Wei,
  • Jinliang Wang and
  • Yu Chen

Beilstein J. Nanotechnol. 2015, 6, 686–696, doi:10.3762/bjnano.6.69

Graphical Abstract
  • shows a similar trend against AR as EFavg does. Effect of the excitation wavelength Since the SERS effect is a near-field phenomenon and related to the localized surface plasmon resonance (LSPR) of the nanostructures, it is expected to exhibit a behavior that depends on the excitation wavelength. Here
PDF
Album
Full Research Paper
Published 09 Mar 2015

Palladium nanoparticles anchored to anatase TiO2 for enhanced surface plasmon resonance-stimulated, visible-light-driven photocatalytic activity

  • Kah Hon Leong,
  • Hong Ye Chu,
  • Shaliza Ibrahim and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2015, 6, 428–437, doi:10.3762/bjnano.6.43

Graphical Abstract
  • with controlled Pd NPs size ranging between 17 and 29 nm onto the surface of TiO2. Thus, it gives the characteristic for Pd NPs to absorb light in the visible region obtained through localized surface plasmon resonance (LSPRs). Apparently, the photocatalytic activity of the prepared photocatalysts was
  • most promising strategy to defeat the limitations of TiO2. This is due to the characteristics of noble metals, which can drastically enhance the absorption of visible light through localized surface plasmon resonance effects (LSPRs) [23][24]. The LSPR absorption in noble metal NPs arise from the
  • efficiency was achieved by depositing Pd NPs on the surface of TiO2. This immense progress was attributed to the localized surface plasmon resonance that enables Pd NPs to absorb light in the visible region. This is attributed to an optical excitation that produces a coherent oscillation of free electrons in
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2015

Tunable light filtering by a Bragg mirror/heavily doped semiconducting nanocrystal composite

  • Ilka Kriegel and
  • Francesco Scotognella

Beilstein J. Nanotechnol. 2015, 6, 193–200, doi:10.3762/bjnano.6.18

Graphical Abstract
  • : active optical component; electronic band gap nanostructure; localized surface plasmon resonance; photonic crystal; Introduction Optical filters are fundamental components employed in almost all optical setups and devices. For example, they play a very important role in microfluidic devices, which are
PDF
Album
Supp Info
Full Research Paper
Published 16 Jan 2015

Exploring plasmonic coupling in hole-cap arrays

  • Thomas M. Schmidt,
  • Maj Frederiksen,
  • Vladimir Bochenkov and
  • Duncan S. Sutherland

Beilstein J. Nanotechnol. 2015, 6, 1–10, doi:10.3762/bjnano.6.1

Graphical Abstract
  • compared to separated arrays of holes or caps. Optical spectroscopy and FDTD simulations reveal strong coupling between the gold caps and both Bloch Wave-surface plasmon polariton (BW-SPP) modes and localized surface plasmon resonance (LSPR)-type resonances in hole arrays when they are in close proximity
  • . The interesting and complex coupling between caps and hole arrays reveals the details of the field distribution for these simple to fabricate structures. Keywords: caps; colloidal lithography; hybridization; localized surface plasmon resonance; near field; SRO hole arrays; Introduction The
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2015

Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity

  • Dan Lis and
  • Francesca Cecchet

Beilstein J. Nanotechnol. 2014, 5, 2275–2292, doi:10.3762/bjnano.5.237

Graphical Abstract
  • of up to 1012 [7]. This is possible thanks to the strong electromagnetic (EM) field amplification achieved with surface plasmon resonances, especially when the field is confined in nanometric metallic structures under the form of a localized surface plasmon resonance (LSPR) [8][9][10][11][12][13][14
  • experiments. As we will show in detail in this review, up to now, the best enhancement reported equals 105 for SE-SFG, and reaches 107 with SE-CARS, by comparison with the conventional SFG and CARS, respectively. 3 Localized surface plasmon resonance in nanostructures As mentioned earlier, the intensity of
  • nanoparticles directly into the liquid [79]. Although the phase matching condition was not fulfilled, the average particle spacing had been adjusted such as to be smaller than the coherence length, while the pump wavelength was matching the localized surface plasmon resonance of the silver NPs. In this first
PDF
Album
Review
Published 28 Nov 2014

Enhanced photocatalytic activity of Ag–ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical method

  • Sini Kuriakose,
  • Vandana Choudhary,
  • Biswarup Satpati and
  • Satyabrata Mohapatra

Beilstein J. Nanotechnol. 2014, 5, 639–650, doi:10.3762/bjnano.5.75

Graphical Abstract
  • of their recombination rate [19]. Secondly, noble metal nanoparticles on ZnO exhibit localized surface plasmon resonance (LSPR) absorption of light which can have significant impact on semiconductor photocatalysis. The LSPR wavelength of noble metal nanoparticles can be tuned from near UV to the
PDF
Album
Full Research Paper
Published 15 May 2014

Hole-mask colloidal nanolithography combined with tilted-angle-rotation evaporation: A versatile method for fabrication of low-cost and large-area complex plasmonic nanostructures and metamaterials

  • Jun Zhao,
  • Bettina Frank,
  • Frank Neubrech,
  • Chunjie Zhang,
  • Paul V. Braun and
  • Harald Giessen

Beilstein J. Nanotechnol. 2014, 5, 577–586, doi:10.3762/bjnano.5.68

Graphical Abstract
  • Beilstein TV. Keywords: hole-mask colloidal nanolithography; localized surface plasmon resonance sensing; low-cost large-area plasmonic nanostructures; multilayer fabrication; surface-enhanced infrared absorption spectroscopy (SERS); Introduction Optics with metallic nanostructures has generated keen
PDF
Album
Video
Full Research Paper
Published 06 May 2014

In vitro toxicity and bioimaging studies of gold nanorods formulations coated with biofunctional thiol-PEG molecules and Pluronic block copolymers

  • Tianxun Gong,
  • Douglas Goh,
  • Malini Olivo and
  • Ken-Tye Yong

Beilstein J. Nanotechnol. 2014, 5, 546–553, doi:10.3762/bjnano.5.64

Graphical Abstract
  • important characteristics of AuNRs is that as light interacts with them, localized surface plasmon resonance (LSPR) is excited and locally oscillates around the particle [1]. LSPRs are electromagnetic modes associated with the collective oscillations of the free electrons confined to the nanoscale size
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2014

Plasmonics-based detection of H2 and CO: discrimination between reducing gases facilitated by material control

  • Gnanaprakash Dharmalingam,
  • Nicholas A. Joy,
  • Benjamin Grisafe and
  • Michael A. Carpenter

Beilstein J. Nanotechnol. 2012, 3, 712–721, doi:10.3762/bjnano.3.81

Graphical Abstract
  • fabricated through layer-by-layer physical vapor deposition (PVD). The change in the peak position of the localized surface plasmon resonance (LSPR) was monitored as a function of time and gas concentration. The responses of the films were preferential towards H2, as observed from the results of exposing the
  • observing the change in the position of the localized surface plasmon resonance (LSPR) peak. This work employs a layer-by-layer approach, meaning that the Au was first deposited and annealed to form nanoparticles and was then followed by the deposition and annealing of the YSZ capping layer. The metal-oxide
PDF
Album
Full Research Paper
Published 31 Oct 2012
Other Beilstein-Institut Open Science Activities