Search results

Search for "lubricants" in Full Text gives 21 result(s) in Beilstein Journal of Nanotechnology.

Experimental investigation of usage of POE lubricants with Al2O3, graphene or CNT nanoparticles in a refrigeration compressor

  • Kayhan Dağıdır and
  • Kemal Bilen

Beilstein J. Nanotechnol. 2023, 14, 1041–1058, doi:10.3762/bjnano.14.86

Graphical Abstract
  • using pure oil. Moreover, density and dynamic viscosity of the nanolubricant samples used in the experiments were also measured, and their kinematic viscosity, which is an important parameter for lubricants, was calculated. It was determined that the kinematic viscosity continuously increased with
  • : Al2O3; carbon nanotubes; graphene; nanolubricant; polyolester oil; refrigeration compressor; Introduction Compressor performance is directly related to the thermophysical properties of the lubricant. Improving the thermophysical properties of lubricants can be tried as a method to improve compressor
  • performance. It is stated that the addition of nanoparticles to lubricants improves their thermophysical properties. Lubricants with nanoparticles are specially called nanolubricants. Shrivastava and Chhalotre [1] conducted various experiments on a refrigeration compressor using a nanolubricant with Al2O3
PDF
Album
Full Research Paper
Published 02 Nov 2023

The microstrain-accompanied structural phase transition from h-MoO3 to α-MoO3 investigated by in situ X-ray diffraction

  • Zeqian Zhang,
  • Honglong Shi,
  • Boxiang Zhuang,
  • Minting Luo and
  • Zhenfei Hu

Beilstein J. Nanotechnol. 2023, 14, 692–700, doi:10.3762/bjnano.14.55

Graphical Abstract
  • , making them multifunctional electronic and optical materials for applications in ion batteries [3][4], lubricants [5], gas detectors [6][7], photochromism [8][9], photocatalysis [10][11], and superconductors [12][13]. The molybdenum oxide MoO3 can crystalize into several structures, including α-MoO3 [14
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2023

Effect of lubricants on the rotational transmission between solid-state gears

  • Huang-Hsiang Lin,
  • Jonathan Heinze,
  • Alexander Croy,
  • Rafael Gutiérrez and
  • Gianaurelio Cuniberti

Beilstein J. Nanotechnol. 2022, 13, 54–62, doi:10.3762/bjnano.13.3

Graphical Abstract
  • Huang-Hsiang Lin Jonathan Heinze Alexander Croy Rafael Gutierrez Gianaurelio Cuniberti Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, Dresden, Germany 10.3762/bjnano.13.3 Abstract Lubricants are widely used in macroscopic mechanical systems to reduce friction
  • and wear. However, on the microscopic scale, it is not clear to what extent lubricants are beneficial. Therefore, in this study, we consider two diamond solid-state gears at the nanoscale immersed in different lubricant molecules and perform classical MD simulations to investigate the rotational
  • transmission of motion. We find that lubricants can help to synchronize the rotational transmission between gears regardless of the molecular species and the center-of-mass distance. Moreover, the influence of the angular velocity of the driving gear is investigated and shown to be related to the bond
PDF
Album
Supp Info
Full Research Paper
Published 05 Jan 2022

Scanning transmission imaging in the helium ion microscope using a microchannel plate with a delay line detector

  • Eduardo Serralta,
  • Nico Klingner,
  • Olivier De Castro,
  • Michael Mousley,
  • Santhana Eswara,
  • Serge Duarte Pinto,
  • Tom Wirtz and
  • Gregor Hlawacek

Beilstein J. Nanotechnol. 2020, 11, 1854–1864, doi:10.3762/bjnano.11.167

Graphical Abstract
  • controlled by a motion controller (Nanomotion XCDX) using a closed feedback loop with optically encoded linear rails (Schneeberger Miniscale Plus). This construction is compatible with the high-vacuum requirements, is self-locking, requires no mechanical feedthroughs nor lubricants, and provides high
PDF
Album
Full Research Paper
Published 11 Dec 2020

An atomic force microscope integrated with a helium ion microscope for correlative nanoscale characterization

  • Santiago H. Andany,
  • Gregor Hlawacek,
  • Stefan Hummel,
  • Charlène Brillard,
  • Mustafa Kangül and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2020, 11, 1272–1279, doi:10.3762/bjnano.11.111

Graphical Abstract
  • the AFM. In our AFM design, we accounted for this already in the mechanical design (avoidance of trapped air pockets, no lubricants, UHV-compatible motors) as well as in the assembly by using, wherever possible, Kapton flex-PCBs or scarcely outgassing Teflon-coated wires. It is also critical that the
PDF
Album
Full Research Paper
Published 26 Aug 2020

Quantitative determination of the interaction potential between two surfaces using frequency-modulated atomic force microscopy

  • Nicholas Chan,
  • Carrie Lin,
  • Tevis Jacobs,
  • Robert W. Carpick and
  • Philip Egberts

Beilstein J. Nanotechnol. 2020, 11, 729–739, doi:10.3762/bjnano.11.60

Graphical Abstract
  • , require coatings to prevent sticking of the mirrors due to relatively high adhesive forces [3]. Therefore, there has been considerable research into surface modification (e.g., lubricants [7][8][9], surface functionalization [10][11], and surface texturing [12][13][14]) in order to mitigate the impact of
PDF
Album
Full Research Paper
Published 06 May 2020

Sub-wavelength waveguide properties of 1D and surface-functionalized SnO2 nanostructures of various morphologies

  • Venkataramana Bonu,
  • Binaya Kumar Sahu,
  • Arindam Das,
  • Sankarakumar Amirthapandian,
  • Sandip Dhara and
  • Harish C. Barshilia

Beilstein J. Nanotechnol. 2019, 10, 379–388, doi:10.3762/bjnano.10.37

Graphical Abstract
  • commercial application as a gas sensor, transparent conducting electrodes, and catalyst [13][14][15]. SnO2 NSs have been used in several other areas such as sub-wavelength waveguide sensors [4], microelectronics [6], Li-ion batteries [16], and lubricants [17]. Oxygen vacancy related defects in SnO2
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2019

Friction reduction through biologically inspired scale-like laser surface textures

  • Johannes Schneider,
  • Vergil Djamiykov and
  • Christian Greiner

Beilstein J. Nanotechnol. 2018, 9, 2561–2572, doi:10.3762/bjnano.9.238

Graphical Abstract
  • resources. In order to do so, new strategies for optimized tribological systems have to be considered. Among them are the formulation of new lubricants [2][3], novel coatings [4][5][6], a more thorough understanding of the basic materials science principles governing friction and wear of bulk materials [7
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2018

Nanotribology

  • Enrico Gnecco,
  • Susan Perkin,
  • Andrea Vanossi and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2018, 9, 2330–2331, doi:10.3762/bjnano.9.217

Graphical Abstract
  • (e.g., circular mode AFM) for investigation of abrasive wear are proposed by Noel et al. [10]. Considering the interdisciplinary nature of the subject, and the variety of materials, lubricants, and possible applications, the previous examples, in spite of their high quality, are still not enough to
PDF
Editorial
Published 28 Aug 2018

Recent highlights in nanoscale and mesoscale friction

  • Andrea Vanossi,
  • Dirk Dietzel,
  • Andre Schirmeisen,
  • Ernst Meyer,
  • Rémy Pawlak,
  • Thilo Glatzel,
  • Marcin Kisiel,
  • Shigeki Kawai and
  • Nicola Manini

Beilstein J. Nanotechnol. 2018, 9, 1995–2014, doi:10.3762/bjnano.9.190

Graphical Abstract
  • research groups have been investigating the frictional properties of nanoscale systems confined between two sliding blocks. This intendedly vague indication of “systems” includes liquid lubricants in the boundary-lubrication regime, but also solid lubricants such as graphite or graphene or MoS2 flakes
  • lubricants. By MD simulations and theoretical arguments two (even commensurate) crystalline surfaces lubricated by mobile, rotating graphene flakes were proven to exhibit stable superlubric sliding when they are dressed by randomly-oriented pinned graphene patches: The resulting effectively incommensurate
  • the nanometer scale Molecular layers play an important role in the reduction of friction and wear at the macro scale. The addition of boundary lubricants is necessary to prevent damaging metallic adhesive forces between the machine parts in relative motion (cold welding). Unfortunately, under high
PDF
Album
Review
Published 16 Jul 2018

Exploring wear at the nanoscale with circular mode atomic force microscopy

  • Olivier Noel,
  • Aleksandar Vencl and
  • Pierre-Emmanuel Mazeran

Beilstein J. Nanotechnol. 2017, 8, 2662–2668, doi:10.3762/bjnano.8.266

Graphical Abstract
  • roads, brakes or car engines [6]. The use of lubricants to reduce wear is also a source of pollution as they are often in the form of unfriendly environmental chemicals discarded into the environment [7]. Advances in tribology have allowed for a better understanding of wear mechanisms at the macroscale
PDF
Album
Full Research Paper
Published 11 Dec 2017

Interface conditions of roughness-induced superoleophilic and superoleophobic surfaces immersed in hexadecane and ethylene glycol

  • Yifan Li,
  • Yunlu Pan and
  • Xuezeng Zhao

Beilstein J. Nanotechnol. 2017, 8, 2504–2514, doi:10.3762/bjnano.8.250

Graphical Abstract
  • , hydrophobic, oleophilic and oleophobic surfaces, and there is no data for superoleophilic and superoleophobic surfaces. In superoleophobicity, the values of the roughness parameters are mostly larger than those of surfaces with hydrophobicity/oleophobicity. As oils are widely used as lubricants and antifreeze
PDF
Album
Full Research Paper
Published 27 Nov 2017

A comparative study of the nanoscale and macroscale tribological attributes of alumina and stainless steel surfaces immersed in aqueous suspensions of positively or negatively charged nanodiamonds

  • Colin K. Curtis,
  • Antonin Marek,
  • Alex I. Smirnov and
  • Jacqueline Krim

Beilstein J. Nanotechnol. 2017, 8, 2045–2059, doi:10.3762/bjnano.8.205

Graphical Abstract
  • : additives; alumina; aqueous colloids; fractal; friction; lubricants; nanodiamond; nanotribology; quartz crystal microbalance; stainless steel; Introduction Interest in nanoparticles as eco-friendly lubricant additives has grown tremendously in recent years [1][2]. The field is driven in a large part by a
  • nanoparticle-based lubricants. Importantly, we have identified systems exhibiting beneficial, neutral, and detrimental tribology properties, facilitating additional experimental as well as theoretical studies from the first principles approach. Conclusion A comparative study of the nanoscale and macroscale
PDF
Album
Full Research Paper
Published 29 Sep 2017

Imidazolium-based ionic liquids used as additives in the nanolubrication of silicon surfaces

  • Patrícia M. Amorim,
  • Ana M. Ferraria,
  • Rogério Colaço,
  • Luís C. Branco and
  • Benilde Saramago

Beilstein J. Nanotechnol. 2017, 8, 1961–1971, doi:10.3762/bjnano.8.197

Graphical Abstract
  • Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal 10.3762/bjnano.8.197 Abstract In recent years, with the development of micro/nanoelectromechanical systems (MEMS/NEMS), the demand for efficient lubricants of silicon surfaces intensified
  • stable surface layer, which hinders the contact between the sliding surfaces. Keywords: additives; ionic liquids; lubricants; nanotribology; silicon; Introduction The use of ILs as neat lubricants was first proposed by Ye et al. in 2001 [1]. Since then, many investigations confirmed the good
  • performance of ILs and their potential to substitute traditional lubricants in specific applications due to their peculiar properties. However, the price of ILs compared with that of commercial oils does not make them commercially competitive. Thus, the possibility of using ILs as additives to base lubricants
PDF
Album
Full Research Paper
Published 20 Sep 2017

Stick–slip boundary friction mode as a second-order phase transition with an inhomogeneous distribution of elastic stress in the contact area

  • Iakov A. Lyashenko,
  • Vadym N. Borysiuk and
  • Valentin L. Popov

Beilstein J. Nanotechnol. 2017, 8, 1889–1896, doi:10.3762/bjnano.8.189

Graphical Abstract
  • transition is not possible for boundary lubricants consisting of spherically shaped molecules. However for the polymeric lubricant materials, first-order phase transition may occur [17]. In our previous work [18] we studied the stick–slip boundary friction mode considering lubricant melting as both first and
PDF
Album
Full Research Paper
Published 08 Sep 2017

Development of a nitrogen-doped 2D material for tribological applications in the boundary-lubrication regime

  • Shende Rashmi Chandrabhan,
  • Velayudhanpillai Jayan,
  • Somendra Singh Parihar and
  • Sundara Ramaprabhu

Beilstein J. Nanotechnol. 2017, 8, 1476–1483, doi:10.3762/bjnano.8.147

Graphical Abstract
  • tribological performance. This energy loss is caused primarily by friction and wear. The employment of lubricants in machines reduces friction and wear, which results in energy saving. However, the tribological performance of conventional lubricants (water and oil) fails to meet the demand of newly developed
  • mechanical technologies. Recent development in lubricant technology reveals that the tribological performance of conventional lubricants can be improved by the addition of the solid particles [1][2][3][4][5][6]. When boundary lubrication occurs the asperities of the sliding surfaces are in direct contact
  • of lubricants makes use of the ball-bearing mechanism and the high mechanical strength of solid additives. Several studies have been carried to investigate the tribological performance of lubricant after the addition of solid particles. Initially, most of the studies were concentrated on the carbon
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2017

When the going gets rough – studying the effect of surface roughness on the adhesive abilities of tree frogs

  • Niall Crawford,
  • Thomas Endlein,
  • Jonathan T. Pham,
  • Mathis Riehle and
  • W. Jon P. Barnes

Beilstein J. Nanotechnol. 2016, 7, 2116–2131, doi:10.3762/bjnano.7.201

Graphical Abstract
  • ) that depend on the area under the pad [25]. Since tree frog adhesion depends upon a fluid joint and fluids tend to act as lubricants, it is surprising that tree frogs can generate high friction forces. Such forces are thought to be due to close contact between the tips of the nanopillars that cover the
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2016

Synthesis and applications of carbon nanomaterials for energy generation and storage

  • Marco Notarianni,
  • Jinzhang Liu,
  • Kristy Vernon and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2016, 7, 149–196, doi:10.3762/bjnano.7.17

Graphical Abstract
  • of pencils or solid lubricants based on graphite. Graphene can also be exfoliated from graphite by chemical methods, the process of which is very similar to the dispersion of polymers in particular solvents. This method can be explained by enthalpy and charge transfer between the graphene layers and
PDF
Album
Review
Published 01 Feb 2016

Carbon nano-onions (multi-layer fullerenes): chemistry and applications

  • Juergen Bartelmess and
  • Silvia Giordani

Beilstein J. Nanotechnol. 2014, 5, 1980–1998, doi:10.3762/bjnano.5.207

Graphical Abstract
  • widely studied and have shown promising results as lubricants. In 2002, Cabioc’h et al. reported that CNOs incorporated in silver layers significantly reduced wear, while the friction coefficient is largely unaffected by their presence [74]. Further studies investigated the use of CNOs as a solid state
PDF
Album
Review
Published 04 Nov 2014

Friction behavior of a microstructured polymer surface inspired by snake skin

  • Martina J. Baum,
  • Lars Heepe and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 83–97, doi:10.3762/bjnano.5.8

Graphical Abstract
  • with acoustic emissions, to an increase in abrasion and to stronger energy dissipation, to an increase in maintenance costs of industrial facilities due to (1) the higher need of lubricants, (2) the replacement costs of machine parts, and (3) the loss of productivity due to maintenance. However, the
PDF
Album
Full Research Paper
Published 24 Jan 2014

Effect of spherical Au nanoparticles on nanofriction and wear reduction in dry and liquid environments

  • Dave Maharaj and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2012, 3, 759–772, doi:10.3762/bjnano.3.85

Graphical Abstract
  • contact with each other and surfaces present in their working environment, is necessary. Nano-object additives have proven to be successful in macroscale studies in reducing friction and wear when added to solid materials and base-liquid lubricants and are expected to provide similar benefits on the micro
  • nanoparticles prove to be a good potential lubricant as it lowers the coefficient of friction and minimizes wear. Further studies with other nano-objects under dry conditions and as an additive to water or other low-viscosity liquids could open up the possibilities for new types of hybrid lubricants. Such
  • lubricants are expected to contribute to the increased lifetime and efficiency of MEMS/NEMS devices, which will lead to their successful commercialization. In addition, the study of manipulation of new types of nanoparticles in different liquids will lead to an understanding of their suitability for various
PDF
Album
Full Research Paper
Published 15 Nov 2012
Other Beilstein-Institut Open Science Activities