Search results

Search for "magnetic field" in Full Text gives 317 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Stereodiscrimination of guests in chiral organosilica aerogels studied by ESR spectroscopy

  • Sebastian Polarz,
  • Yasar Krysiak,
  • Martin Wessig and
  • Florian Kuhlmann

Beilstein J. Nanotechnol. 2025, 16, 2034–2054, doi:10.3762/bjnano.16.140

Graphical Abstract
  • surfaces has proven challenging. For the separation of the individual factors, researchers developed powerful nuclear magnetic resonance (NMR) techniques. Great success was reached using pulsed field gradient (PFG)-NMR [19][20][21]. PFG-NMR incorporates the application of magnetic field gradients in
  • addition to the uniform external magnetic field. A sequence of gradient pulses is used to label the position of the nuclear spins. The first pulse encodes spatial information; if the spins move (diffuse) during the interval, a second gradient pulse will partially or fully refocus them. The extent to which
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2025

Energy spectrum and quantum phase transition of the coupled single spin and an infinitely coordinated Ising chain

  • Seidali Seidov,
  • Natalia Pugach and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2025, 16, 1668–1676, doi:10.3762/bjnano.16.117

Graphical Abstract
  • mostly aligned along the z-axis due to the large term. Effectively, an interaction with the single spin creates a strong magnetic field parallel to the single spin direction. Thus, the perpendicular component of the “magnetic field” can be considered as a small perturbation. Formally, this means that
PDF
Album
Full Research Paper
Published 24 Sep 2025

Few-photon microwave fields for superconducting transmon-based qudit control

  • Irina A. Solovykh,
  • Andrey V. Pashchenko,
  • Natalya A. Maleeva,
  • Nikolay V. Klenov,
  • Olga V. Tikhonova and
  • Igor I. Soloviev

Beilstein J. Nanotechnol. 2025, 16, 1580–1591, doi:10.3762/bjnano.16.112

Graphical Abstract
  • ), or a pair of JJs forming an interferometer-like circuit, so the spectrum is no longer equidistant. In the case where the JJ pair is used, the characteristic (plasma) frequency of the transmon can be quickly adjusted in 10–20 ns in the range of 1 GHz by an external magnetic field [35]. In practice
  • , researchers try to reduce the transmon frequency dependence on the external magnetic field to get rid of parasitic flux fluctuations. A large shunt capacitance CB is needed to increase resistance to parasitic charge fluctuations [36]. A few-photon non-classical microwave field (with a certain number of
  • description of Fock-based qudit control First, we need to quantize the field in the harmonic oscillator that corresponds to a high-quality resonator. The energy of the electric field stored in the capacitor and the energy of the magnetic field stored in the inductor can be written as follows: with operators
PDF
Album
Full Research Paper
Published 11 Sep 2025

Modeling magnetic properties of cobalt nanofilms used as a component of spin hybrid superconductor–ferromagnetic structures

  • Aleksey Fedotov,
  • Olesya Severyukhina,
  • Anastasia Salomatina and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2025, 16, 1557–1566, doi:10.3762/bjnano.16.110

Graphical Abstract
  • structure and composition of Co–Ni–Fe films were evaluated, and it was found out how the deposition rate affects the conversion of a weak magnetic field into magnetic induction. In addition, thin-film structures based on Fe and Co are among the most promising materials that can be applied in the creation of
  • force parameter and damping spin coefficient, respectively; χ(t), η(t) are white noise present in the description of atom motion processes and the behavior of their spins, respectively; and ωi is the multiplication value of the gyromagnetic ratio and the local magnetic field [22]. It has been known for
  • checking the convergence of the obtained numerical solutions. The second task investigated the self-organization of atomic spins in cobalt thin films and analyzed the dependence of nanofilm magnetic properties on their thickness. In both problems, there was no external magnetic field in the system, and the
PDF
Album
Full Research Paper
Published 08 Sep 2025

Nanomaterials for biomedical applications

  • Iqra Zainab,
  • Zohra Naseem,
  • Syeda Rubab Batool,
  • Filippo Pierini,
  • Seda Kizilel and
  • Muhammad Anwaar Nazeer

Beilstein J. Nanotechnol. 2025, 16, 1499–1503, doi:10.3762/bjnano.16.105

Graphical Abstract
  • . Drugs or genetic material can be carried by these cylindrical nanoparticles and directed towards specific cells through external stimuli such as a magnetic field or light [12]. A new nanoscale drug delivery system has been developed by using carbon nanotubes and a carbon nanotube–graphene hybrid to more
PDF
Editorial
Published 28 Aug 2025

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications

  • Akshana Parameswaran Sreekala,
  • Pooja Raveendran Nair,
  • Jithin Kundalam Kadavath,
  • Bindu Krishnan,
  • David Avellaneda Avellaneda,
  • M. R. Anantharaman and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 1428–1498, doi:10.3762/bjnano.16.104

Graphical Abstract
PDF
Album
Review
Published 27 Aug 2025

Better together: biomimetic nanomedicines for high performance tumor therapy

  • Imran Shair Mohammad,
  • Gizem Kursunluoglu,
  • Anup Kumar Patel,
  • Hafiz Muhammad Ishaq,
  • Cansu Umran Tunc,
  • Dilek Kanarya,
  • Mubashar Rehman,
  • Omer Aydin and
  • Yin Lifang

Beilstein J. Nanotechnol. 2025, 16, 1246–1276, doi:10.3762/bjnano.16.92

Graphical Abstract
  • intravenous administration of T cell membrane-coated nanoparticles directed to the cancerous organ by an externally applied magnetic field, followed by immune cell membrane-mediated cancer targeting. This strategy led to accelerated accumulation of nanomedicine in the tumor with minimal off-target exposure
PDF
Album
Review
Published 05 Aug 2025

Transfer function of an asymmetric superconducting Gauss neuron

  • Fedor A. Razorenov,
  • Aleksander S. Ionin,
  • Nikita S. Shuravin,
  • Liubov N. Karelina,
  • Mikhail S. Sidel’nikov,
  • Sergey V. Egorov and
  • Vitaly V. Bol’ginov

Beilstein J. Nanotechnol. 2025, 16, 1160–1170, doi:10.3762/bjnano.16.85

Graphical Abstract
  • ]. Indeed, the inductance of a superconducting film carrying an electric current consists of two components, namely, the magnetic inductance (originating from the magnetic field energy) and the kinetic inductance (originating from the kinetic energy of the superconducting electrons). Should one want to
PDF
Album
Full Research Paper
Published 21 Jul 2025

Structural and magnetic properties of microwave-synthesized reduced graphene oxide/VO2/Fe2O3 nanocomposite

  • Sumanta Sahoo,
  • Ankur Sood and
  • Sung Soo Han

Beilstein J. Nanotechnol. 2025, 16, 921–932, doi:10.3762/bjnano.16.70

Graphical Abstract
  • of metal oxide on the rGO surface, which agrees with the previous SEM, XRD, and XPS analysis. The magnetic properties of the GVF investigated at room temperature under an applied magnetic field ranging from −6000 Oe to 6000 Oe is shown in Figure 9. Herein, the saturation magnetization (Ms) value for
PDF
Album
Full Research Paper
Published 20 Jun 2025

Synthesis and magnetic transitions of rare-earth-free Fe–Mn–Ni–Si-based compositionally complex alloys at bulk and nanoscale

  • Shabbir Tahir,
  • Tatiana Smoliarova,
  • Carlos Doñate-Buendía,
  • Michael Farle,
  • Natalia Shkodich and
  • Bilal Gökce

Beilstein J. Nanotechnol. 2025, 16, 823–836, doi:10.3762/bjnano.16.62

Graphical Abstract
  • applications such as magnetic hyperthermia, where NPs are used in cancer therapy to induce localized heating when exposed to an alternating magnetic field [34]. However, producing CCAs at the nanoscale presents significant challenges. Traditional wet chemistry approaches often fail because of elemental
  • FC curve shows higher magnetization than the ZFC curve, indicating that spin alignment occurs faster when cooled in the presence of a magnetic field because of the pre-alignment that the magnetic field produces. Above 179 K, the ZFC and FC curves converge, suggesting that thermal energy disrupts
  • in the presence of a magnetic field. The M–H curve (Figure 7d and Figure S6d, Supporting Information File 1) of the Al-based CCA at 5 K shows significant hysteresis, with a Hc of 16.6 kA·m−1, which is higher than that of the bulk Al-based CCA (11 kA·m−1). The increase in Hc in the NPs is likely due
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2025

Morphology and properties of pyrite nanoparticles obtained by pulsed laser ablation in liquid and thin films for photodetection

  • Akshana Parameswaran Sreekala,
  • Bindu Krishnan,
  • Rene Fabian Cienfuegos Pelaes,
  • David Avellaneda Avellaneda,
  • Josué Amílcar Aguilar-Martínez and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 785–805, doi:10.3762/bjnano.16.60

Graphical Abstract
  • of a magnetic field by laser ablation in liquids. SEM and TEM images of FeS2 nanoparticles prepared without a magnetic field revealed spherical particles with varying sizes, aggregation and agglomeration with an average size of approximately 40 nm [38]. In contrast to this, the average particle sizes
  • phase-pure FeS2. A photodetector with detectivity of around 108 Jones was reported [68]. Mohsin et al. reported an external magnetic field-assisted laser ablation in liquid technique to prepare FeS2 nanoparticles [38]. They reported fabrication of FeS2 NPs/p-Si photodetectors using dipping technique
PDF
Album
Supp Info
Full Research Paper
Published 03 Jun 2025

Changes of structural, magnetic and spectroscopic properties of microencapsulated iron sucrose nanoparticles in saline

  • Sabina Lewińska,
  • Pavlo Aleshkevych,
  • Roman Minikayev,
  • Anna Bajorek,
  • Mateusz Dulski,
  • Krystian Prusik,
  • Tomasz Wojciechowski and
  • Anna Ślawska-Waniewska

Beilstein J. Nanotechnol. 2025, 16, 762–784, doi:10.3762/bjnano.16.59

Graphical Abstract
  • the considered temperature range. Increasing the magnetic field to 10 kOe did not significantly change the position of TMAX (see inset of Figure 5b), and the shape of the ZFC–FC relation. Only the magnetic field above 10 kOe shifts the ZFC maximum to lower temperatures; however, even at 60 kOe, the
  • full reversibility of the ZFC and FC curves is not achieved (Figure 5b). The so-called irreversibility temperature, TIRR, at which the ZFC and FC curves bifurcate, is very little dependent on the magnetic field and is around 65 K for all registered temperature relations. It should be also stressed that
  • in the M(T) relations there is no trace of the Verway transition (TV ≈ 125 K) typical for Fe3O4. Figure 5c presents the temperature dependences of the real part of the magnetic susceptibility, χ’(T), registered at several frequencies f of an ac external magnetic field for FS0. (In Figure 5c only
PDF
Album
Full Research Paper
Published 02 Jun 2025

High-temperature epitaxial growth of tantalum nitride thin films on MgO: structural evolution and potential for SQUID applications

  • Michelle Cedillo Rosillo,
  • Oscar Contreras López,
  • Jesús Antonio Díaz,
  • Agustín Conde Gallardo and
  • Harvi A. Castillo Cuero

Beilstein J. Nanotechnol. 2025, 16, 690–699, doi:10.3762/bjnano.16.53

Graphical Abstract
  • critical temperature of 6.3 K. In materials with superconducting properties, any variation of an external magnetic field induces electric currents on the surface that counteract this variation. This unique property enables the materials to detect very weak magnetic fields. This principle is leveraged in
PDF
Album
Full Research Paper
Published 22 May 2025

Performance optimization of a microwave-coupled plasma-based ultralow-energy ECR ion source for silicon nanostructuring

  • Joy Mukherjee,
  • Safiul Alam Mollick,
  • Tanmoy Basu and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2025, 16, 484–494, doi:10.3762/bjnano.16.37

Graphical Abstract
  • a strong electric field generated in the cavity, the ECR-based ion sources equipped with microwave cavities neither contain any filament nor any type of electrode [26]. The high plasma density within a quartz cup is confined by solenoid magnets surrounding it, creating a multi-cusp magnetic field
  • . However, careful attention is required for the microwave coupling to the plasma cup to minimize the reflections of microwave power. Mechanical adjustments to the resonator length and waveguide are made to ensure minimal reflection. Additionally, maintaining the necessary magnetic field strength is crucial
PDF
Album
Full Research Paper
Published 31 Mar 2025

Vortex lattices of layered HTSCs at different vortex–vortex interaction potentials

  • Valerii P. Lenkov,
  • Anastasia N. Maksimova,
  • Anna N. Moroz and
  • Vladimir A. Kashurnikov

Beilstein J. Nanotechnol. 2025, 16, 362–370, doi:10.3762/bjnano.16.27

Graphical Abstract
  • ; Introduction Type-II superconductors, as shown by numerous studies, have a complex phase diagram in a magnetic field. In fields greater than the first critical field Hc1 and less than the second critical field Hc2, at temperatures below the critical temperature the superconductor is in a mixed state, in which
  • the magnetic field penetrates the superconductor in the form of Abrikosov vortices [1]. In high-temperature superconductors (HTSCs), such as Y- and Bi-based cuprates, the vortex lattice is further complicated since these compounds have a layered structure [2][3][4][5][6]. The vortex filament in these
  • discovered. Indications were also obtained that the second peak on the magnetization curve (second magnetization peak) at low temperature (less than 0.55Tc) coincides with the transition between the regimes of the flow of the vortex lattice. The measurements were also performed in a magnetic field inclined
PDF
Album
Full Research Paper
Published 13 Mar 2025

Theoretical study of the electronic and optical properties of a composite formed by the zeolite NaA and a magnetite cluster

  • Joel Antúnez-García,
  • Roberto Núñez-González,
  • Vitalii Petranovskii,
  • H’Linh Hmok,
  • Armando Reyes-Serrato,
  • Fabian N. Murrieta-Rico,
  • Mufei Xiao and
  • Jonathan Zamora

Beilstein J. Nanotechnol. 2025, 16, 44–53, doi:10.3762/bjnano.16.5

Graphical Abstract
  • introduction of magnetic nanoparticles into zeolite crystals so that the resulting composite can respond to an external magnetic field [33]. By imparting magnetic properties to such composites, they can be efficiently recovered after capturing contaminants such as heavy metals [34][35][36][37] and dyes [38][39
PDF
Album
Full Research Paper
Published 17 Jan 2025

New design of operational MEMS bridges for measurements of properties of FEBID-based nanostructures

  • Bartosz Pruchnik,
  • Krzysztof Kwoka,
  • Ewelina Gacka,
  • Dominik Badura,
  • Piotr Kunicki,
  • Andrzej Sierakowski,
  • Paweł Janus,
  • Tomasz Piasecki and
  • Teodor Gotszalk

Beilstein J. Nanotechnol. 2024, 15, 1273–1282, doi:10.3762/bjnano.15.103

Graphical Abstract
  • [38], but this technique is difficult to apply in SEM chambers (the ultimate working environment for opMEMS) because of the difficulty of obtaining a controlled magnetic field inside. In the experiments, the resonance of the opMEMS was measured outside the vacuum chamber using a SIOS nano vibration
PDF
Album
Full Research Paper
Published 23 Oct 2024

The role of a tantalum interlayer in enhancing the properties of Fe3O4 thin films

  • Hai Dang Ngo,
  • Vo Doan Thanh Truong,
  • Van Qui Le,
  • Hoai Phuong Pham and
  • Thi Kim Hang Pham

Beilstein J. Nanotechnol. 2024, 15, 1253–1259, doi:10.3762/bjnano.15.101

Graphical Abstract
  • SiO2, MgO(100) and MgO/Ta/SiO2, respectively. Magnetization of Fe3O4 samples in an external magnetic field in a range of (a) −10 kOe to 10 kOe and (b) −2 kOe to 2 kOe. Surface properties obtained from the AFM scans of Fe3O4 samples. Structural parameters of Fe3O4 thin films on various substrates
PDF
Album
Full Research Paper
Published 14 Oct 2024

A review on the structural characterization of nanomaterials for nano-QSAR models

  • Salvador Moncho,
  • Eva Serrano-Candelas,
  • Jesús Vicente de Julián-Ortiz and
  • Rafael Gozalbes

Beilstein J. Nanotechnol. 2024, 15, 854–866, doi:10.3762/bjnano.15.71

Graphical Abstract
  • found to be used as NM descriptors, such as the relaxivities R1 and R2 obtained from magnetic resonance studies [44]. Related to magnetism, Kotzabasaki et al. used the magnetic field strength, but also a single categorical descriptor describing the magnetic core composition of the nanoparticles [25
PDF
Album
Supp Info
Review
Published 11 Jul 2024

Radiofrequency enhances drug release from responsive nanoflowers for hepatocellular carcinoma therapy

  • Yanyan Wen,
  • Ningning Song,
  • Yueyou Peng,
  • Weiwei Wu,
  • Qixiong Lin,
  • Minjie Cui,
  • Rongrong Li,
  • Qiufeng Yu,
  • Sixue Wu,
  • Yongkang Liang,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2024, 15, 569–579, doi:10.3762/bjnano.15.49

Graphical Abstract
  • Clara, USA). The magnetic properties were evaluated on a Quantum Design PPMS-9T vibrating magnetometer at 300 K in a magnetic field from −3.0 T to 3.0 T (PPMS-9T, Quantum Design, San Diego, USA). Longitudinal (T1) and transversal (T2) relaxation times were measured on a 3.0 T MR scanner (MAGNETOM Skyra
PDF
Album
Full Research Paper
Published 22 May 2024

Photocatalytic degradation of methylene blue under visible light by cobalt ferrite nanoparticles/graphene quantum dots

  • Vo Chau Ngoc Anh,
  • Le Thi Thanh Nhi,
  • Le Thi Kim Dung,
  • Dang Thi Ngoc Hoa,
  • Nguyen Truong Son,
  • Nguyen Thi Thao Uyen,
  • Nguyen Ngoc Uyen Thu,
  • Le Van Thanh Son,
  • Le Trung Hieu,
  • Tran Ngoc Tuyen and
  • Dinh Quang Khieu

Beilstein J. Nanotechnol. 2024, 15, 475–489, doi:10.3762/bjnano.15.43

Graphical Abstract
  • degradation of methylene blue (MB) under visible light. The catalyst can be recycled with an external magnetic field and displays suitable stability. Also, it was reused in three successive experiments with a loss of efficiency of about 5%. The CF/GQDs are considered as an efficient photocatalyst for MB
  • temperature. They are much smaller than the bulk value (65.8 emu/g). The decrease in the saturation magnetization of the CF/GQDs is attributed to the presence of the nonmagnetic GQDs. The particles’ high magnetic permeability shows that they could be separated with an external magnetic field. The Mr values of
  • , oxalates, and sulfates, Scheme 1). Finally, MB could be mineralized to CO2, H2O, and [38]. In order to check the stability of the materials, the prepared CF/GQDs-200 catalysts were reused in three cycles (Figure 9b). After each run, the catalyst was separated with an external magnetic field. It was found
PDF
Album
Supp Info
Full Research Paper
Published 29 Apr 2024

Superconducting spin valve effect in Co/Pb/Co heterostructures with insulating interlayers

  • Andrey A. Kamashev,
  • Nadir N. Garif’yanov,
  • Aidar A. Validov,
  • Vladislav Kataev,
  • Alexander S. Osin,
  • Yakov V. Fominov and
  • Ilgiz A. Garifullin

Beilstein J. Nanotechnol. 2024, 15, 457–464, doi:10.3762/bjnano.15.41

Graphical Abstract
  • an in-plane external magnetic field strength of ≈ 1.5 kOe. Magnetic studies of the samples are presented in Supporting Information File 1. We took the same thickness of 3 nm for both Co1 and Co2 layers. In addition, a control set of the samples with similar thicknesses of the S and F layers but
  • out with a standard four-point method in the DC mode. For changing the mutual direction of the magnetization of the F layers between the P and AP orientations, an external magnetic field of ≈1 kOe < was always applied in the plane of the sample in all measurements. The strength of the magnetic field
  • defined as the midpoint of the transition curve. To study the SSV effect, the samples were cooled down from room temperature to low temperatures in a magnetic field of the order of 5 kOe (field cooling procedure) applied in the sample plane. This field aligns the magnetization of both F layers. Also, the
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2024

Modulated critical currents of spin-transfer torque-induced resistance changes in NiCu/Cu multilayered nanowires

  • Mengqi Fu,
  • Roman Hartmann,
  • Julian Braun,
  • Sergej Andreev,
  • Torsten Pietsch and
  • Elke Scheer

Beilstein J. Nanotechnol. 2024, 15, 360–366, doi:10.3762/bjnano.15.32

Graphical Abstract
  • oscillatory manner by the magnetic field in the nanowire-based devices. We present a toy model to qualitatively explain these observations. Keywords: AAO template; critical current; multilayered magnetic nanowires; spin-transfer torque; three-dimensional devices; Introduction Spin-transfer torque (STT) has
  • a nonmonotonic dependence between the critical current of STT-assisted resistance changes and the strength of the external magnetic field in NiCu/Cu multilayered nanowire devices with arbitrary sequence of magnetic and nonmagnetic sections along the long axis of the nanowires. The STT devices were
  • mV) added to a DC bias voltage at a frequency of 4531 Hz. A four-point measurement was used to exclude the effects of the cabling. A positive current is defined such that the electrons flow from the top electrode to the bottom electrode. A magnetic field was applied perpendicular to the nanowires
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2024

Vinorelbine-loaded multifunctional magnetic nanoparticles as anticancer drug delivery systems: synthesis, characterization, and in vitro release study

  • Zeynep Özcan and
  • Afife Binnaz Hazar Yoruç

Beilstein J. Nanotechnol. 2024, 15, 256–269, doi:10.3762/bjnano.15.24

Graphical Abstract
  • external magnetic field. This finding is crucial for future studies on magnetic field-guided drug release and tumour treatment. Particularly, our research also investigates the effect of varying polymer ratios on drug release kinetics and photothermal efficiency, which was not addressed in the
  • multifunctional PEGylated magnetic nanoparticles coated with polydopamine (PDA) exhibit strong near-infrared absorption because of the PDA layer and have the ability to deliver drugs under a magnetic field owing to their superparamagnetism [51]. During the drug loading studies, the anticancer drug vinorelbine was
  • nanoparticles [49]. Based on the findings from VSM, the nanoparticles exhibit high magnetization [49][54]. The magnetic properties of VNB/PDA/Fe3O4 NPs can be attributed to the structural arrangement of Fe3O4 within the nanoparticles. A magnetic field can enhance the dispersion of VNB/PDA/Fe3O4 NPs in an
PDF
Album
Full Research Paper
Published 28 Feb 2024

Ferromagnetic resonance spectra of linear magnetosome chains

  • Elizaveta M. Gubanova and
  • Nikolai A. Usov

Beilstein J. Nanotechnol. 2024, 15, 157–167, doi:10.3762/bjnano.15.15

Graphical Abstract
  • produce elongated magnetite nanoparticles [1][2][10][11]. A linear chain of uniformly magnetized magnetosomes grown inside a magnetotactic bacterium is a kind of magnetic needle that helps the bacterium navigate in the weak Earth's magnetic field in search of the best habitat [1][2][3][4]. Chains of
  • of magnetic nanoparticle assemblies are often characterized by measuring ferromagnetic resonance (FMR) spectra [14][15]. The analysis of FMR spectra makes it possible to determine the effective magnetic field in the sample under study, which depends on the particle saturation magnetization, the type
  • [22][23][24][25], in which the behavior of a magnetosome chain in an alternating (ac) high-frequency magnetic field is replaced by the behavior of a uniformly magnetized ellipsoid with an appropriately selected demagnetizing factor. As a result, important information about the internal geometry of the
PDF
Album
Full Research Paper
Published 05 Feb 2024
Other Beilstein-Institut Open Science Activities