Search results

Search for "mechanisms" in Full Text gives 705 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Observation of unexpected uniaxial magnetic anisotropy in La2/3Sr1/3MnO3 films by a BaTiO3 overlayer in an artificial multiferroic bilayer

  • John E. Ordóñez,
  • Lorena Marín,
  • Luis A. Rodríguez,
  • Pedro A. Algarabel,
  • José A. Pardo,
  • Roger Guzmán,
  • Luis Morellón,
  • César Magén,
  • Etienne Snoeck,
  • María E. Gómez and
  • Manuel R. Ibarra

Beilstein J. Nanotechnol. 2020, 11, 651–661, doi:10.3762/bjnano.11.51

Graphical Abstract
  • improve our understanding of the mechanisms driving MEC in BTO/LSMO heterostructures. In this work, we show how the presence of a BTO layer on an LSMO film under different substrate-induced epitaxial strains can affect the magnetic anisotropy of the LSMO layer at room temperature. To strain the sample, we
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2020

Soybean-derived blue photoluminescent carbon dots

  • Shanshan Wang,
  • Wei Sun,
  • Dong-sheng Yang and
  • Fuqian Yang

Beilstein J. Nanotechnol. 2020, 11, 606–619, doi:10.3762/bjnano.11.48

Graphical Abstract
  • synthesized from glassy carbon [16], graphite [26], polymethyl methacrylate (PMMA) [27], and a graphite–cement mixture [6] via LAL in various liquids. In general, there are three major mechanisms contributing to the photoluminescence (PL) of CDs: 1) size-dependent bandgap (quantum confinement), 2) surface
  • methods; such studies would provide insight into the CD formation and PL mechanisms [31][32]. Using fluorescent N-doped CDs, which were made from grinding soybean via a pyrolysis process at 200 °C for 3 h under argon atmosphere, Xu et al. [31] observed blue emission with maximum emission of 3.17% quantum
  • -temperature annealing. Both methods can be categorized as top-down methods in contrast to bottom-up methods. The PL characteristics of the CDs produced by both methods are analyzed, and the PL mechanisms of the CDs are discussed. The strategies developed in this work offer simple and effective means for
PDF
Album
Supp Info
Full Research Paper
Published 09 Apr 2020

Adsorptive removal of bulky dye molecules from water with mesoporous polyaniline-derived carbon

  • Hyung Jun An,
  • Jong Min Park,
  • Nazmul Abedin Khan and
  • Sung Hwa Jhung

Beilstein J. Nanotechnol. 2020, 11, 597–605, doi:10.3762/bjnano.11.47

Graphical Abstract
  • ) 8.1 times that of commercial, activated carbon for AR1. The remarkable adsorption of AR1 and JGB over KOH-900 could be explained by the combined mechanisms of hydrophobic, π–π, electrostatic and van der Waals interactions. Keywords: acid red 1; adsorption; bulky dye molecules; Janus green B
  • adsorptive performance of the PDC for small dye molecules, such as MO and MB, was not very impressive, albeit quite competitive against similar reported results. The adsorption mechanisms could be suggested based on the physical properties (including hydrophobicity) of PDC materials and adsorption of AR1 and
  • . Adsorption mechanism Understanding the adsorption mechanism is helpful to develop a competitive adsorption technology and to further improve the performance of an adsorbent. So far, several mechanisms [48], such as electrostatic [49][50], π–π [51][52][53][54], acid–base interactions [55][56], and hydrogen
PDF
Album
Supp Info
Full Research Paper
Published 08 Apr 2020

Comparison of fresh and aged lithium iron phosphate cathodes using a tailored electrochemical strain microscopy technique

  • Matthias Simolka,
  • Hanno Kaess and
  • Kaspar Andreas Friedrich

Beilstein J. Nanotechnol. 2020, 11, 583–596, doi:10.3762/bjnano.11.46

Graphical Abstract
  • but further improvements are necessary. These improvements are not only focused on higher energy and power density, but also the need to offer a longer product life with a stable capacity and power capability. For the analysis of ageing mechanisms, a variety of techniques are available. In the
  • proportional to the product of the Vegard expansion coefficient of the host material βH and the change in ionic concentration of the ionic component δcLi, in our case Li [26][29]. The drawback of the ESM technique is the possible additional contributions to the ESM signal from other mechanisms. These
  • mechanisms are piezoelectricity, flexoelectricity and electrostriction. Further contributions are possible by deformation potential generation, electron–hole formation, coupling of electrons and phonons, electrochemical side reactions in the tip–sample junction, electrostatic interaction, and volume
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020

Examination of the relationship between viscoelastic properties and the invasion of ovarian cancer cells by atomic force microscopy

  • Mengdan Chen,
  • Jinshu Zeng,
  • Weiwei Ruan,
  • Zhenghong Zhang,
  • Yuhua Wang,
  • Shusen Xie,
  • Zhengchao Wang and
  • Hongqin Yang

Beilstein J. Nanotechnol. 2020, 11, 568–582, doi:10.3762/bjnano.11.45

Graphical Abstract
  • mechanisms of cancer invasion and metastasis based on chemotherapy can be beneficial for both biomechanical research and clinical applications [30][31]. Therefore, the present study examined the elasticity and viscosity through AFM, and cell migration, invasion and microfilament density through cell
  • the reduction of viscoelasticity was related with an increase of the migratory potential of cancer cells, providing a new understanding of the mechanisms in cancer development [8]. The process of invasion and metastasis is based on the movement and deformation of cancer cells [8], and this process is
  • ). After treatment with 0.5 μM Ech for 3 h, they changed to 26.6 ± 2.36 Pa·s, 18.72 ± 1.46 Pa·s and 16.6 ± 1.16 Pa·s, respectively (Figure 4). No obvious changes of the average viscosity of HOSEpiC, OVCAR-3 and HO-8910 cells were found after Ech treatment (Figure 4). Therefore, the detailed mechanisms
PDF
Album
Full Research Paper
Published 06 Apr 2020

Identification of physicochemical properties that modulate nanoparticle aggregation in blood

  • Ludovica Soddu,
  • Duong N. Trinh,
  • Eimear Dunne,
  • Dermot Kenny,
  • Giorgia Bernardini,
  • Ida Kokalari,
  • Arianna Marucco,
  • Marco P. Monopoli and
  • Ivana Fenoglio

Beilstein J. Nanotechnol. 2020, 11, 550–567, doi:10.3762/bjnano.11.44

Graphical Abstract
  • nanomaterials are among the most studied inorganic materials for medical applications due to their promising properties. However, some studies have shown that they are both capable of inducing the formation of thrombi, and the relevant mechanisms of action are still under debate [9]. In fact, single-walled
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2020

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
  • substances were encapsulated into hollow capsules of weak PE by spontaneous as well as charge-controlled mechanisms [70][74]. The net negative charge caused by either complex formation or preloaded PE molecules in the interior of the capsule is the driving force for the encapsulation processes [75]. Another
PDF
Album
Review
Published 27 Mar 2020

Preparation and in vivo evaluation of glyco-gold nanoparticles carrying synthetic mycobacterial hexaarabinofuranoside

  • Gennady L. Burygin,
  • Polina I. Abronina,
  • Nikita M. Podvalnyy,
  • Sergey A. Staroverov,
  • Leonid O. Kononov and
  • Lev A. Dykman

Beilstein J. Nanotechnol. 2020, 11, 480–493, doi:10.3762/bjnano.11.39

Graphical Abstract
  • should be noted that the interaction of functionalized GNPs with cells of the immune system is still far from being understood in detail and requires further studies [56]. Experiments aimed at elucidating the mechanisms of antibody production in response to the introduction of glyco-GNPs are planned in
PDF
Album
Supp Info
Full Research Paper
Published 19 Mar 2020

Interfacial charge transfer processes in 2D and 3D semiconducting hybrid perovskites: azobenzene as photoswitchable ligand

  • Nicole Fillafer,
  • Tobias Seewald,
  • Lukas Schmidt-Mende and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2020, 11, 466–479, doi:10.3762/bjnano.11.38

Graphical Abstract
  • synthesis of 2D and 3D hybrid perovskite phases. The energy transfer mechanisms are influenced by the length of the molecular spacer moiety, which determines the distance between the π system and the semiconductor surfaces. We find huge differences in the photoswitching behaviour between the free, surface
  • and therefore of the conduction band (CB). Relative energies for VBs and CBs, shown in Figure 3, are comparable for all 2D LHPs with integrated azobenzene ligands. Possible energy-transfer mechanisms are, thus, influenced exclusively by the distance between the inorganic layer and the azobenzene
  • surface-dependent mechanisms. Because in the 3D systems, the azobenzene compounds are only attached to the surface, with much less steric hindrance compared to the sandwich situation in the 2D compounds. Thus, higher rates of photoswitching are expected. The ligands are more comparable with the surface
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2020

Formation of nanoripples on ZnO flat substrates and nanorods by gas cluster ion bombardment

  • Xiaomei Zeng,
  • Vasiliy Pelenovich,
  • Bin Xing,
  • Rakhim Rakhimov,
  • Wenbin Zuo,
  • Alexander Tolstogouzov,
  • Chuansheng Liu,
  • Dejun Fu and
  • Xiangheng Xiao

Beilstein J. Nanotechnol. 2020, 11, 383–390, doi:10.3762/bjnano.11.29

Graphical Abstract
  • self-assembled structures still suffers from poor control as well as the lack of understanding regarding the mechanisms involved [1]. Nowadays, self-assembled surface nanoscale structures are of interest in many applications. Substrates with nanoscale ripples are excellent templates for the deposition
PDF
Album
Full Research Paper
Published 24 Feb 2020

Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine

  • Valentina Francia,
  • Daphne Montizaan and
  • Anna Salvati

Beilstein J. Nanotechnol. 2020, 11, 338–353, doi:10.3762/bjnano.11.25

Graphical Abstract
  • receptors, and the subsequent mechanisms cells use to internalize them. The factors affecting these initial events are discussed. Then, we briefly describe the different pathways of endocytosis in cells and illustrate with some examples the challenges in understanding how nanomaterial properties, such as
  • size, charge, and shape, affect the mechanisms cells use for their internalization. Technical difficulties in characterizing these mechanisms are presented. A better understanding of the first interactions of nano-sized materials with cells will help to design nanomedicines with improved targeting
  • , engineered nano-sized materials can exploit the cellular machinery to be internalized by cells. In fact, since the cell membrane blocks diffusion of complexes larger than ca. 1 kDa, nano-sized materials, such as nanomedicines, are transported into cells using energy-dependent mechanisms, unlike many small
PDF
Album
Review
Published 14 Feb 2020

Understanding nanoparticle flow with a new in vitro experimental and computational approach using hydrogel channels

  • Armel Boutchuen,
  • Dell Zimmerman,
  • Abdollah Arabshahi,
  • John Melnyczuk and
  • Soubantika Palchoudhury

Beilstein J. Nanotechnol. 2020, 11, 296–309, doi:10.3762/bjnano.11.22

Graphical Abstract
  • related to flow of NPs such as the quantity of NPs lost during transport and flow trajectory greatly affect the clinical efficiency of NP drug delivery systems. Currently, there is little knowledge of the physical mechanisms dominating NP flow inside the human body due to the limitations of available
  • Navier–Stokes-based Tenasi flow solver was applied to investigate the velocity and deposition of the NPs in our study. The results from the complementary experimental and CFD approach provided valuable understanding of the transport mechanisms dominating NP flow at different concentration regimes that
  • key insights into the mechanisms and dominating forces determining the flow trajectory of the NPs. The mass loss percentage of the iron oxide NPs increased with NP size following a reliable quadratic correlation (R = 0.96) in the case of flow through soft channels mimicking vascular constructs. This
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2020

Using gold nanoparticles to detect single-nucleotide polymorphisms: toward liquid biopsy

  • María Sanromán Iglesias and
  • Marek Grzelczak

Beilstein J. Nanotechnol. 2020, 11, 263–284, doi:10.3762/bjnano.11.20

Graphical Abstract
  • cancer biomarker. We discuss the main mechanisms of the assays that either are assisted by DNA-based molecular machines or by enzymatic reactions, summarize their performance and provide an outlook towards future developments. Keywords: amplification reactions; biomarkers; colorimetric biosensing; gold
  • the use of emergent nanomaterials. Over the last decade, a number of novel and optically active nanomaterials involving semiconductor or metal nanocrystals enabled the development of sensing devices with rather simple transduction mechanisms [3]. For example, the aggregation-induced color change of a
  • by discussing current technologies in clinics, we review the performance of recent sensors for single-point mutation in which gold nanoparticles act as signal transducers. We classify the discussed sensors according to whether the underlying mechanisms of detection involve enzymatic reactions or not
PDF
Album
Review
Published 31 Jan 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
PDF
Album
Review
Published 15 Jan 2020

Internalization mechanisms of cell-penetrating peptides

  • Ivana Ruseska and
  • Andreas Zimmer

Beilstein J. Nanotechnol. 2020, 11, 101–123, doi:10.3762/bjnano.11.10

Graphical Abstract
  • the cell interior. Nevertheless, the mechanism they use to enter cells still remains an unsolved piece of the puzzle. Endocytosis and direct penetration have been suggested as the two major mechanisms used for internalization, however, it is not all black and white in the nanoworld. Studies have shown
  • that several CPPs are able to induce and shift between different uptake mechanisms depending on their concentration, cargo or the cell line used. This review will focus on the major internalization pathways CPPs exploit, their characteristics and regulation, as well as some of the factors that
  • the parameters which have a major impact on the selection of uptake mechanism. Furthermore, the recent advances in the knowledge of the uptake mechanisms used by the most prominent CPPs are discussed. Figure 1 gives an overview of the active and passive uptake mechanisms CPPs use to enter cells
PDF
Album
Review
Published 09 Jan 2020

The effect of heat treatment on the morphology and mobility of Au nanoparticles

  • Sven Oras,
  • Sergei Vlassov,
  • Simon Vigonski,
  • Boris Polyakov,
  • Mikk Antsov,
  • Vahur Zadin,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2020, 11, 61–67, doi:10.3762/bjnano.11.6

Graphical Abstract
  • twinned NPs and the tendency of such particles to seek mechanisms of stress relaxation [25]. The rearrangement of surface atoms into more rounded outer geometries can be a way of energy minimization while preserving the five-fold twinned inner structure of the NP, as shown in Figure 3 for a Au NP heated
PDF
Album
Full Research Paper
Published 06 Jan 2020

Advanced hybrid nanomaterials

  • Andreas Taubert,
  • Fabrice Leroux,
  • Pierre Rabu and
  • Verónica de Zea Bermudez

Beilstein J. Nanotechnol. 2019, 10, 2563–2567, doi:10.3762/bjnano.10.247

Graphical Abstract
  • improved or even completely new properties. This has been called a Lego©-like approach to materials synthesis [18]. The main issue in this approach is to monitor and control interactions between different bricks and to understand the physico-chemical mechanisms involved at the interfaces between the
PDF
Editorial
Published 20 Dec 2019

Plasmonic nanosensor based on multiple independently tunable Fano resonances

  • Lin Cheng,
  • Zelong Wang,
  • Xiaodong He and
  • Pengfei Cao

Beilstein J. Nanotechnol. 2019, 10, 2527–2537, doi:10.3762/bjnano.10.243

Graphical Abstract
  • . Due to their different resonance mechanisms, each resonance peak can be independently tuned by adjusting the corresponding parameters of the structure. In addition, the sensitivity of the nanosensor is found to be up to 1900 nm/RIU. For practical application, a legitimate combination of various
PDF
Album
Supp Info
Full Research Paper
Published 17 Dec 2019

Small protein sequences can induce cellular uptake of complex nanohybrids

  • Jan-Philip Merkl,
  • Malak Safi,
  • Christian Schmidtke,
  • Fadi Aldeek,
  • Johannes Ostermann,
  • Tatiana Domitrovic,
  • Sebastian Gärtner,
  • John E. Johnson,
  • Horst Weller and
  • Hedi Mattoussi

Beilstein J. Nanotechnol. 2019, 10, 2477–2482, doi:10.3762/bjnano.10.238

Graphical Abstract
  • groups have investigated mechanisms for intracellular-uptake and in vivo biodistribution of various nanomaterials [9][10][11]. Due to the complexity of nanostructured materials combined with the intricacy of cell biology, it has been proven very difficult to develop a good understanding of what controls
PDF
Album
Supp Info
Letter
Published 12 Dec 2019

Abrupt elastic-to-plastic transition in pentagonal nanowires under bending

  • Sergei Vlassov,
  • Magnus Mets,
  • Boris Polyakov,
  • Jianjun Bian,
  • Leonid Dorogin and
  • Vahur Zadin

Beilstein J. Nanotechnol. 2019, 10, 2468–2476, doi:10.3762/bjnano.10.237

Graphical Abstract
  • (Figure 9). An abrupt elastic-to-plastic transition was not observed even for bending curvatures up to 90°. A hard coating may prevent stress release mechanisms related to dislocation pile up and dislocation nucleation at the surface [33][34]. However, more systematic studies on the role of coating need
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2019

Design of a nanostructured mucoadhesive system containing curcumin for buccal application: from physicochemical to biological aspects

  • Sabrina Barbosa de Souza Ferreira,
  • Gustavo Braga,
  • Évelin Lemos Oliveira,
  • Jéssica Bassi da Silva,
  • Hélen Cássia Rosseto,
  • Lidiane Vizioli de Castro Hoshino,
  • Mauro Luciano Baesso,
  • Wilker Caetano,
  • Craig Murdoch,
  • Helen Elizabeth Colley and
  • Marcos Luciano Bruschi

Beilstein J. Nanotechnol. 2019, 10, 2304–2328, doi:10.3762/bjnano.10.222

Graphical Abstract
  • biocompatibility, improved mechanical characteristics tailored for the specific application, in addition to new release mechanisms and improved permeability [9][12][13][14]. The delivery through the mucosa via buccal administration has shown several advantages as a drug delivery target site. The ease of
  • of the analysis, which hampered the generation of a kinetic pattern for first or second order in both analyzed temperatures. These mechanisms would improve the understanding of the involved mechanisms of this interaction. Kinetic studies of CUR and P407 were carried out by Braga [50], and the initial
PDF
Album
Supp Info
Full Research Paper
Published 25 Nov 2019

Microfluidics as tool to prepare size-tunable PLGA nanoparticles with high curcumin encapsulation for efficient mucus penetration

  • Nashrawan Lababidi,
  • Valentin Sigal,
  • Aljoscha Koenneke,
  • Konrad Schwarzkopf,
  • Andreas Manz and
  • Marc Schneider

Beilstein J. Nanotechnol. 2019, 10, 2280–2293, doi:10.3762/bjnano.10.220

Graphical Abstract
  • ][16]. Notably, only NPs with size less than 200 nm have the ability to permeate easily through mucus without being immobilized by the natural size-filtering mechanism [10][17][18][19]. Furthermore, modifying the surface chemistry of NPs is beneficial for avoiding the interaction/filtering mechanisms
  • the nature of the organic phase plays a decisive role in controlling the diffusion of the organic phase to the aqueous phase, which induces as well a change in the mixing time [50][51]. Effect of the length of the focus mixing channel Attempts have been made to explain the mechanisms of
PDF
Album
Full Research Paper
Published 19 Nov 2019

Four self-made free surface electrospinning devices for high-throughput preparation of high-quality nanofibers

  • Yue Fang and
  • Lan Xu

Beilstein J. Nanotechnol. 2019, 10, 2261–2274, doi:10.3762/bjnano.10.218

Graphical Abstract
  • -electrospinning (MBE), modified free surface electrospinning (MFSE), oblique section free surface electrospinning (OSFSE) and spherical section free surface electrospinning (SSFSE), designed for high-throughput preparation of high-quality nanofibers, are presented in this paper. The mechanisms of fiber
  • nanofibers were experimentally investigated. The experimental data agree well with the results of the simulations and show that all four FSE devices can be used to prepare large quantities of high-quality nanofibers. A comparison of the spinning mechanisms of these four FSE devices illustrates that the SSFSE
  • devices, designed to obtain high-quality PAN nanofibers in large quantities. Using the Maxwell 3D software, the spinning mechanisms of the four FSE devices were studied by simulation of the electric field distribution, which is very import in the FSE process. The simulation results showed that the
PDF
Album
Full Research Paper
Published 15 Nov 2019

Design and facile synthesis of defect-rich C-MoS2/rGO nanosheets for enhanced lithium–sulfur battery performance

  • Chengxiang Tian,
  • Juwei Wu,
  • Zheng Ma,
  • Bo Li,
  • Pengcheng Li,
  • Xiaotao Zu and
  • Xia Xiang

Beilstein J. Nanotechnol. 2019, 10, 2251–2260, doi:10.3762/bjnano.10.217

Graphical Abstract
  • obvious redox peaks show the multiple reaction mechanisms of sulfur cathodes in Li–S batteries (Figure 6a). Two explicit reduction peaks located at 2.25 V and 2.02 V correspond to the cathodic scanning. The peak at 2.25 V is related to the reduction of cyclic S8 to Li2Sn and the peak at 2.02 V corresponds
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

A novel all-fiber-based LiFePO4/Li4Ti5O12 battery with self-standing nanofiber membrane electrodes

  • Li-li Chen,
  • Hua Yang,
  • Mao-xiang Jing,
  • Chong Han,
  • Fei Chen,
  • Xin-yu Hu,
  • Wei-yong Yuan,
  • Shan-shan Yao and
  • Xiang-qian Shen

Beilstein J. Nanotechnol. 2019, 10, 2229–2237, doi:10.3762/bjnano.10.215

Graphical Abstract
  • method. We used the materials in all-fiber-based gel batteries (the battery fabrication process is schematically shown in Figure 1). The electrochemical properties of semi-batteries and full batteries were studied, and the mechanisms leading to the high performance of the batteries were subsequently
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2019
Other Beilstein-Institut Open Science Activities