Search results

Search for "metal nanostructures" in Full Text gives 50 result(s) in Beilstein Journal of Nanotechnology.

Near-field surface plasmon field enhancement induced by rippled surfaces

  • Mario D’Acunto,
  • Francesco Fuso,
  • Ruggero Micheletto,
  • Makoto Naruse,
  • Francesco Tantussi and
  • Maria Allegrini

Beilstein J. Nanotechnol. 2017, 8, 956–967, doi:10.3762/bjnano.8.97

Graphical Abstract
  • scanning near-field optical microscopy. Keywords: aperture scanning near-field optical microscopy; gold rippled surface; localized hot spots; metal–dielectric−metal nanogaps; surface plasmon resonance; Introduction Metal nanostructures capable of producing localized surface plasmon polaritons (SPPs) are
  • spectroscopy (TERS) [5], plasmonic photovoltaics [6][7][8], plasmonic nanosensors [9][10], and near-field optical theory [2][11][12]. It is commonly accepted that enormous field enhancements at the resonance of the optical response applied to randomly patterned metal nanostructures are highly dependent upon
  • and height much smaller than the wavelength of typical plasmon resonances. Different top-down or bottom-up fabrication techniques have been introduced to produce metal nanostructures with active plasmonic reactivity [14]. For example, ion beam sputtering (IBS) is a widely employed bottom-up technique
PDF
Album
Supp Info
Full Research Paper
Published 28 Apr 2017

Laser irradiation in water for the novel, scalable synthesis of black TiOx photocatalyst for environmental remediation

  • Massimo Zimbone,
  • Giuseppe Cacciato,
  • Mohamed Boutinguiza,
  • Vittorio Privitera and
  • Maria Grazia Grimaldi

Beilstein J. Nanotechnol. 2017, 8, 196–202, doi:10.3762/bjnano.8.21

Graphical Abstract
  • dots [10], to the use of metal grafting [11][12][13][14] or plasmonic metal nanostructures [15][16][17][18][19] and the preparation of oxygen-deficient and/or hydrogen-rich TiOx [20][21][22]. We are interested, in particular, in this last approach. Hydrogenated black TiO2 has attracted attention due to
PDF
Album
Full Research Paper
Published 19 Jan 2017

Nonlinear thermoelectric effects in high-field superconductor-ferromagnet tunnel junctions

  • Stefan Kolenda,
  • Peter Machon,
  • Detlef Beckmann and
  • Wolfgang Belzig

Beilstein J. Nanotechnol. 2016, 7, 1579–1585, doi:10.3762/bjnano.7.152

Graphical Abstract
  • , thermoelectric effects decrease towards low temperatures, which usually makes them vanishingly small in metal nanostructures in the sub-Kelvin regime. Results: We report on a combined experimental and theoretical investigation of thermoelectric effects in superconductor/ferromagnet hybrid structures. We
PDF
Album
Supp Info
Full Research Paper
Published 03 Nov 2016

Localized surface plasmons in structures with linear Au nanoantennas on a SiO2/Si surface

  • Ilya A. Milekhin,
  • Sergei A. Kuznetsov,
  • Ekaterina E. Rodyakina,
  • Alexander G. Milekhin,
  • Alexander V. Latyshev and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2016, 7, 1519–1526, doi:10.3762/bjnano.7.145

Graphical Abstract
  • response of various thin films and adsorbents due to coincidence of LSPR energies in the nanoantenna and vibrational states of a studied substance [28][29][30]. When the LSPR energy in metal nanostructures is close to the optical phonon energy of investigated substances or thin films, the effects of
PDF
Album
Full Research Paper
Published 26 Oct 2016

Electric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal

  • Eduardo Aluicio-Sarduy,
  • Simone Callegari,
  • Diana Gisell Figueroa del Valle,
  • Andrea Desii,
  • Ilka Kriegel and
  • Francesco Scotognella

Beilstein J. Nanotechnol. 2016, 7, 1404–1410, doi:10.3762/bjnano.7.131

Graphical Abstract
  • knowledge, has not been reported in the literature. However, plasmon peak tuning of gold nanoparticles with an electric field in an electrochemical cell has been recently shown [17], opening the way to a new strategy for electro-optical switches with metal nanostructures. In this paper we show experimental
PDF
Album
Supp Info
Full Research Paper
Published 06 Oct 2016

Sandwich-like layer-by-layer assembly of gold nanoparticles with tunable SERS properties

  • Zhicheng Liu,
  • Lu Bai,
  • Guizhe Zhao and
  • Yaqing Liu

Beilstein J. Nanotechnol. 2016, 7, 1028–1032, doi:10.3762/bjnano.7.95

Graphical Abstract
  • ; polyelectrolyte; Introduction Surface-enhanced Raman scattering (SERS) spectroscopy, which relies on metal nanostructures made of noble metals (Au, Ag and Cu) that sustain localized surface plasmon resonance (LSPR), is applied as a promising analytical tool for detecting and identifying trace amounts of
PDF
Album
Supp Info
Letter
Published 15 Jul 2016

Templated green synthesis of plasmonic silver nanoparticles in onion epidermal cells suitable for surface-enhanced Raman and hyper-Raman scattering

  • Marta Espina Palanco,
  • Klaus Bo Mogensen,
  • Marina Gühlke,
  • Zsuzsanna Heiner,
  • Janina Kneipp and
  • Katrin Kneipp

Beilstein J. Nanotechnol. 2016, 7, 834–840, doi:10.3762/bjnano.7.75

Graphical Abstract
  • different fields of science, technology and medicine [1]. Particularly exciting applications of metal nanostructures exploit the resonant interaction of light with the collective oscillations of the free electrons, so-called surface plasmons. These resonances can give rise to strongly enhanced and highly
  • confined local optical fields in the vicinity of metal nanostructures. Plasmonic field enhancement enables optical and spectroscopic measurements at unprecedented sensitivity and spatial resolution [2]. For chemical analysis, Raman spectroscopy performed in enhanced local fields allows for the detection
  • plasmonics as a field of research generate a strong interest in manufacturing metal nanostructures of well-defined morphologies that support plasmon resonances at very different energies within the entire optical spectral range. Moreover, metal nanostructures should be prepared in simple and fast, cheap and
PDF
Album
Full Research Paper
Published 09 Jun 2016

Au nanoparticle-based sensor for apomorphine detection in plasma

  • Chiara Zanchi,
  • Andrea Lucotti,
  • Matteo Tommasini,
  • Sebastiano Trusso,
  • Ugo de Grazia,
  • Emilio Ciusani and
  • Paolo M. Ossi

Beilstein J. Nanotechnol. 2015, 6, 2224–2232, doi:10.3762/bjnano.6.228

Graphical Abstract
  • enhanced Raman scattering (SERS) effect, have significantly grown [1][2][3][4][5][6][7]. These applications have been fostered by the availability of noble metal nanostructures, which are either intentionally fabricated with the aim of optimizing the signal intensity and reproducibility [2][3] or carefully
PDF
Album
Full Research Paper
Published 26 Nov 2015

Focused particle beam-induced processing

  • Michael Huth and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2015, 6, 1883–1885, doi:10.3762/bjnano.6.191

Graphical Abstract
  • excitations, as pointed out in the article by Francesc Salvat-Pujol et al. [3]. Recently, in an effort towards obtaining pure metal nanostructures, the postprocessing of FEBID structures has become an active field of research. This is covered in this Thematic Series by Brett Lewis and coworkers with a focus
PDF
Editorial
Published 09 Sep 2015

Atomic scale interface design and characterisation

  • Carla Bittencourt,
  • Chris Ewels and
  • Arkady V. Krasheninnikov

Beilstein J. Nanotechnol. 2015, 6, 1708–1711, doi:10.3762/bjnano.6.174

Graphical Abstract
  • metal-nanostructures contacts, development of new tools for characterization and manipulation nanostructures, atomic-scale quantum chemical modelling, and integration in potential devices. All of these are reflected in the 26 reviews presented here. They appropriately demonstrate the richness and
PDF
Editorial
Published 10 Aug 2015

Formation of substrate-based gold nanocage chains through dealloying with nitric acid

  • Ziren Yan,
  • Ying Wu and
  • Junwei Di

Beilstein J. Nanotechnol. 2015, 6, 1362–1368, doi:10.3762/bjnano.6.140

Graphical Abstract
  • discussed. Keywords: dealloying; gold nanocage chains; nitric acid; solid substrate; Introduction Gold nanocages (Au NC) are a novel kind of nanostructure that possesses hollow interiors and porous shells [1][2][3]. Hollow metal nanostructures show unique physical and chemical characteristics with respect
  • -enhanced Raman scattering (SERS), imaging [9], and catalysis [10][11]. Up to now, several methods, such as template-based methods, Kirkendall effect, Ostward ripening, and galvanic replacement, have been developed to synthesize hollow metal nanostructures [12][13][14]. Among them, the galvanic replacement
PDF
Album
Full Research Paper
Published 18 Jun 2015

The Kirkendall effect and nanoscience: hollow nanospheres and nanotubes

  • Abdel-Aziz El Mel,
  • Ryusuke Nakamura and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2015, 6, 1348–1361, doi:10.3762/bjnano.6.139

Graphical Abstract
  • emphasis on the fundamental mechanisms occurring during such a conversion process. The discussion includes the oxidation of metal nanostructures (i.e., nanospheres and nanowires), which is an important process involving the Kirkendall effect. For nanospheres, the symmetrical and the asymmetrical mechanisms
PDF
Album
Review
Published 18 Jun 2015

Polymer blend lithography for metal films: large-area patterning with over 1 billion holes/inch2

  • Cheng Huang,
  • Alexander Förste,
  • Stefan Walheim and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2015, 6, 1205–1211, doi:10.3762/bjnano.6.123

Graphical Abstract
  • plasmonic resonance; metal islands; metal nanostructures; metal polymer blend lithography (metal PBL); nano-patterned template; nanoscale discs; optical transmission; perforated metal film; polymer phase separation; poly(methyl methacrylate) (PMMA); polystyrene (PS); self-assembly; spin-coating; surface
PDF
Album
Full Research Paper
Published 26 May 2015

Magnetic properties of self-organized Co dimer nanolines on Si/Ag(110)

  • Lisa Michez,
  • Kai Chen,
  • Fabien Cheynis,
  • Frédéric Leroy,
  • Alain Ranguis,
  • Haik Jamgotchian,
  • Margrit Hanbücken and
  • Laurence Masson

Beilstein J. Nanotechnol. 2015, 6, 777–784, doi:10.3762/bjnano.6.80

Graphical Abstract
  • transition metal nanostructures, it appears interesting to also study the growth of such objects on a non-metallic template. We underline that since self-organized growth allows the fabrication of a high-density of nanostructures with a narrow size distribution, this route of nanofabrication opens up the
PDF
Album
Full Research Paper
Published 19 Mar 2015

Exploring plasmonic coupling in hole-cap arrays

  • Thomas M. Schmidt,
  • Maj Frederiksen,
  • Vladimir Bochenkov and
  • Duncan S. Sutherland

Beilstein J. Nanotechnol. 2015, 6, 1–10, doi:10.3762/bjnano.6.1

Graphical Abstract
  • interaction of metal nanostructures, both highly symmetric and asymmetric, with light has been investigated extensively in the last years. Localized surface plasmon resonances (LSPR’s) at these structures provide a wealth of interesting phenomena with a broad range of proposed applications [1]. Structures
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2015

Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity

  • Dan Lis and
  • Francesca Cecchet

Beilstein J. Nanotechnol. 2014, 5, 2275–2292, doi:10.3762/bjnano.5.237

Graphical Abstract
  • , in particular by using propagating surface plasmon polaritons (SPP) in thin metal sheets and localized surface plasmon resonances in metal nanostructures. SPP refers to the possibility of propagating an electromagnetic wave within a very thin metallic interface [51][52][53]. The propagating plasmon
  • , thanks to diffraction, without considering the dispersion issue. This is currently achieved by using a metallic grating in external reflection geometry (Figure 3c). The strong EM field enhancements g achieved with noble metal nanostructures have been extensively exploited in SERS. While the SERS
PDF
Album
Review
Published 28 Nov 2014

Near-field photochemical and radiation-induced chemical fabrication of nanopatterns of a self-assembled silane monolayer

  • Ulrich C. Fischer,
  • Carsten Hentschel,
  • Florian Fontein,
  • Linda Stegemann,
  • Christiane Hoeppener,
  • Harald Fuchs and
  • Stefanie Hoeppener

Beilstein J. Nanotechnol. 2014, 5, 1441–1449, doi:10.3762/bjnano.5.156

Graphical Abstract
  • functional groups, in which metal nanostructures, fabricated by CL, served as replaceable barrier nanostructures to guide localized self-assembly processes [23]. Earlier, submicroscopic pattern replication with visible light was introduced [20][24] as a near-field photochemical process to generate chemical
PDF
Album
Full Research Paper
Published 03 Sep 2014

Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

  • Hongjun Chen and
  • Lianzhou Wang

Beilstein J. Nanotechnol. 2014, 5, 696–710, doi:10.3762/bjnano.5.82

Graphical Abstract
  • quantum dots, plasmonic metal nanostructures, and carbon nanostructures for coupling with wide-bandgap transition metal oxides to design better visible-light active photocatalysts. The underlying mechanisms of the composite photocatalysts, e.g., the light-induced charge separation and the subsequent
  • visible-light photocatalytic reaction processes in environmental remediation and solar fuel generation fields, are also introduced. A brief outlook on the nanostructure photosensitization is also given. Keywords: carbon nanostructures; nanostructure sensitization; plasmonic metal nanostructures; quantum
  • utilize solar energy for the investigation of photocatalysis. There is a large array of excellent review articles covering selected aspects of the design of photocatalysts in the past years. In this review, we focus on a variety of nanostructures including quantum dots, plasmonic metal nanostructures and
PDF
Album
Review
Published 23 May 2014

Optical near-fields & nearfield optics

  • Alfred J. Meixner and
  • Paul Leiderer

Beilstein J. Nanotechnol. 2014, 5, 186–187, doi:10.3762/bjnano.5.19

Graphical Abstract
  • far-field tweezers. In spite of the high efficiency of plasmonic metal nanostructures, the near-field enhancement of dielectric structures is preferable for some applications. Walhorn et al. [8] have developed a method for the simultaneous recording of topography and fluorescence that allows for the
PDF
Editorial
Published 19 Feb 2014

Probing the plasmonic near-field by one- and two-photon excited surface enhanced Raman scattering

  • Katrin Kneipp and
  • Harald Kneipp

Beilstein J. Nanotechnol. 2013, 4, 834–842, doi:10.3762/bjnano.4.94

Graphical Abstract
  • . Keywords: near-field; plasmonics; silver nanoaggregates; single molecule; surface-enhanced Raman scattering (SERS); Introduction The resonance frequencies of collective oscillations of the electrons in the conduction band in metal nanostructures, which are called surface plasmons, fall in the optical
  • variations. However, surface plasmons can be also excited by low energy [12] and high energy electrons [13][14]. Therefore, as an alternative to optical methods, electron energy loss spectroscopy (EELS) is emerging as a novel tool to probe plasmonic near-fields of metal nanostructures at nanometer
PDF
Album
Full Research Paper
Published 02 Dec 2013

k-space imaging of the eigenmodes of sharp gold tapers for scanning near-field optical microscopy

  • Martin Esmann,
  • Simon F. Becker,
  • Bernard B. da Cunha,
  • Jens H. Brauer,
  • Ralf Vogelgesang,
  • Petra Groß and
  • Christoph Lienau

Beilstein J. Nanotechnol. 2013, 4, 603–610, doi:10.3762/bjnano.4.67

Graphical Abstract
  • within the field of plasmonics. The concept of SPP to LSP transformation has been investigated theoretically and experimentally for different metal nanostructures [2][3][4][5] in both the adiabatic [5][6][7] and the non-adiabatic [8] limit. Theoretically, it has been shown to be particularly promising in
PDF
Album
Supp Info
Full Research Paper
Published 02 Oct 2013

Near-field effects and energy transfer in hybrid metal-oxide nanostructures

  • Ulrich Herr,
  • Balati Kuerbanjiang,
  • Cahit Benel,
  • Giorgos Papageorgiou,
  • Manuel Goncalves,
  • Johannes Boneberg,
  • Paul Leiderer,
  • Paul Ziemann,
  • Peter Marek and
  • Horst Hahn

Beilstein J. Nanotechnol. 2013, 4, 306–317, doi:10.3762/bjnano.4.34

Graphical Abstract
  • semiconductors. Plasmonic-metal nanostructures are also promising for increasing the conversion efficiency of solar energy directly into chemical energy (see review in [7]), such as in plasmon-enhanced water splitting. These systems depend on the close interaction between metallic nanoparticles and
  • semiconductors. Typically, noble metals are used for the metal nanostructures, since they offer both long term stability and strong resonant enhancements in the range of visible light. A general review of materials aspects in nanotechnology-based approaches in energy technology can be found in [8]. From the
  • well-defined structure and composition of both the metallic and the semiconducting part. In the following, we present results of studies on hybrid nanostructures using regular arrays of nanoantennas formed by lithographic techniques. The optical properties of the metal nanostructures have been
PDF
Album
Full Research Paper
Published 14 May 2013

Platinum nanoparticles from size adjusted functional colloidal particles generated by a seeded emulsion polymerization process

  • Nicolas Vogel,
  • Ulrich Ziener,
  • Achim Manzke,
  • Alfred Plettl,
  • Paul Ziemann,
  • Johannes Biskupek,
  • Clemens K. Weiss and
  • Katharina Landfester

Beilstein J. Nanotechnol. 2011, 2, 459–472, doi:10.3762/bjnano.2.50

Graphical Abstract
  • polymerization; Introduction Uniform colloidal particles have attracted attention from various research fields for their ability to crystallize in highly symmetric arrangements. Two-dimensional crystals, commonly referred to as colloidal monolayers, are widely used for lithographic processes to create metal
  • nanostructures in a cheap and highly parallel fashion [1]. As it is not a light-based process, the diffraction limit is conveniently circumvented and nanostructures with dimensions of only several tens of nanometers are created with remarkable ease. While the conventional process, leading to triangular shaped
PDF
Album
Video
Full Research Paper
Published 18 Aug 2011

Plasmonic nanostructures fabricated using nanosphere-lithography, soft-lithography and plasma etching

  • Manuel R. Gonçalves,
  • Taron Makaryan,
  • Fabian Enderle,
  • Stefan Wiedemann,
  • Alfred Plettl,
  • Othmar Marti and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2011, 2, 448–458, doi:10.3762/bjnano.2.49

Graphical Abstract
  • triggered extensive research on nanostructures that support surface plasmons, namely, nanocavities on metal films, arrays of interacting metal particles and gratings. The coupling between light and localized surface plasmons on metal nanostructures that have been favorably tailored leads to a variety of
PDF
Album
Full Research Paper
Published 16 Aug 2011

Room temperature synthesis of indium tin oxide nanotubes with high precision wall thickness by electroless deposition

  • Mario Boehme,
  • Emanuel Ionescu,
  • Ganhua Fu and
  • Wolfgang Ensinger

Beilstein J. Nanotechnol. 2011, 2, 119–126, doi:10.3762/bjnano.2.14

Graphical Abstract
  • development of applications in optoelectronics, sensors and biomedical sciences [4][5][6]. Miscellaneous methods for the fabrication of ITO nanostructures, such as the post calcination method [7], alkaline hydrolysis [8] or pulsed laser ablation [9] have been developed and used. For fabricating metal
  • nanostructures, the template deposition method, pioneered by C.R. Martin [10][11], is one of the most important processes. So far, various types of nanostructures obtained by electroless deposition have been successfully fabricated using chemical and physical methods [12][13][14]. However, the synthesis of ITO
PDF
Album
Full Research Paper
Published 21 Feb 2011
Other Beilstein-Institut Open Science Activities