Search results

Search for "nanoelectronics" in Full Text gives 88 result(s) in Beilstein Journal of Nanotechnology.

CdSe/ZnS quantum dots as a booster in the active layer of distributed ternary organic photovoltaics

  • Gabriela Lewińska,
  • Piotr Jeleń,
  • Zofia Kucia,
  • Maciej Sitarz,
  • Łukasz Walczak,
  • Bartłomiej Szafraniak,
  • Jerzy Sanetra and
  • Konstanty W. Marszalek

Beilstein J. Nanotechnol. 2024, 15, 144–156, doi:10.3762/bjnano.15.14

Graphical Abstract
  • are used in opto- and nanoelectronics. QDs establish a class of materials transitional between subatomic and mass types of matter. The classification of QDs according to the core material is divided into cadmium [7][8], silver [9][10], indium [9], carbon [11][12], and silicon [13][14]. Numerous
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2024

Measurements of dichroic bow-tie antenna arrays with integrated cold-electron bolometers using YBCO oscillators

  • Leonid S. Revin,
  • Dmitry A. Pimanov,
  • Alexander V. Chiginev,
  • Anton V. Blagodatkin,
  • Viktor O. Zbrozhek,
  • Andrey V. Samartsev,
  • Anastasia N. Orlova,
  • Dmitry V. Masterov,
  • Alexey E. Parafin,
  • Victoria Yu. Safonova,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov,
  • Leonid S. Kuzmin,
  • Anatolie S. Sidorenko,
  • Silvia Masi and
  • Paolo de Bernardis

Beilstein J. Nanotechnol. 2024, 15, 26–36, doi:10.3762/bjnano.15.3

Graphical Abstract
  • of the Common Research Centre “Physics and technology of micro- and nanostructures” of IPM RAS. The measurements and deposition of 210/240 GHz bow-tie dipole antenna arrays were performed using the facilities of the Laboratory of Superconducting Nanoelectronics of NNSTU. Funding This research was
PDF
Album
Full Research Paper
Published 04 Jan 2024

TEM sample preparation of lithographically patterned permalloy nanostructures on silicon nitride membranes

  • Joshua Williams,
  • Michael I. Faley,
  • Joseph Vimal Vas,
  • Peng-Han Lu and
  • Rafal E. Dunin-Borkowski

Beilstein J. Nanotechnol. 2024, 15, 1–12, doi:10.3762/bjnano.15.1

Graphical Abstract
  • imaging; nanodisk; nanofabrication; permalloy; Introduction The ability to study the spatial distribution of magnetization in ferromagnetic nanostructures is important for developing nanoelectronics, particularly for data storage and information processing. A vortex spin configuration has been observed
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2024

Two-dimensional molecular networks at the solid/liquid interface and the role of alkyl chains in their building blocks

  • Suyi Liu,
  • Yasuo Norikane and
  • Yoshihiro Kikkawa

Beilstein J. Nanotechnol. 2023, 14, 872–892, doi:10.3762/bjnano.14.72

Graphical Abstract
  • Applied Sciences, University of Tsukuba, Ibaraki, 305-8571, Japan 10.3762/bjnano.14.72 Abstract Nanoarchitectonics has attracted increasing attention owing to its potential applications in nanomachines, nanoelectronics, catalysis, and nanopatterning, which can contribute to overcoming global problems
  • -assembly; solid/liquid interface; two-dimensional networks; Introduction The fabrication of ordered nanostructures using the concept of nanoarchitectonics [1][2][3][4] for various applications such as nanomachines, nanoelectronics, catalysis, and nanopatterning remains challenging [5][6][7]. Design and
PDF
Album
Review
Published 23 Aug 2023

Humidity-dependent electrical performance of CuO nanowire networks studied by electrochemical impedance spectroscopy

  • Jelena Kosmaca,
  • Juris Katkevics,
  • Jana Andzane,
  • Raitis Sondors,
  • Liga Jasulaneca,
  • Raimonds Meija,
  • Kiryl Niherysh,
  • Yelyzaveta Rublova and
  • Donats Erts

Beilstein J. Nanotechnol. 2023, 14, 683–691, doi:10.3762/bjnano.14.54

Graphical Abstract
  • ; electrochemical impedance spectroscopy; humidity; nanowire; sensor; Introduction Semiconductor metal oxide nanomaterials have demonstrated a great potential for integration in a variety of devices, such as gas and humidity sensors, nanoelectronics, and low-power thermoelectrical generators [1][2][3][4][5][6
  • electrode interconnects for nanoelectronics. Specifically, they can be used to transduce electric signals in nanoelectromechanical system (NEMS) switches [5], which concerns the development of nanoelectronics capable to operate in harsh environments [17]. Additionally, the excellent thermal stability of CuO
PDF
Album
Full Research Paper
Published 05 Jun 2023

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • , molecular nanoelectronics beyond current silicon-based device technologies can be realized. It also provides new scientific opportunities, such as measuring electrical conduction in structurally perfect one-dimensional materials and analyzing the propagation mechanism of chain polymerization. Thus, various
  • intermolecular bond. Such an attempt is a promising approach to realize molecular nanoelectronics using molecule–polymer nanojunctions. Molecular nanoarchitectonics of single molecule heterowires of conducting polymers has also been reported. Sakaguchi et al. realized the synthesis of molecular heterowires by a
  • also be a promising strategy to construct designer nanoscale carbon materials by sequentially linking multiple monomers on a surface. It is expected to contribute to future carbon-based nanoelectronics. Junctions between molecular block units have also been reported with graphene nanoribbons
PDF
Album
Review
Published 03 Apr 2023

Frontiers of nanoelectronics: intrinsic Josephson effect and prospects of superconducting spintronics

  • Anatolie S. Sidorenko,
  • Horst Hahn and
  • Vladimir Krasnov

Beilstein J. Nanotechnol. 2023, 14, 79–82, doi:10.3762/bjnano.14.9

Graphical Abstract
  • : artificial neural networks; functional nanostructures; intrinsic Josephson effect; nanoelectronics; spintronics; The twenty-first century is marked by an explosive growth in the flow of information, which is necessary to process, archive, and transmit data through communication systems. For that purpose
PDF
Editorial
Published 10 Jan 2023

Gap-directed chemical lift-off lithographic nanoarchitectonics for arbitrary sub-micrometer patterning

  • Chang-Ming Wang,
  • Hong-Sheng Chan,
  • Chia-Li Liao,
  • Che-Wei Chang and
  • Wei-Ssu Liao

Beilstein J. Nanotechnol. 2023, 14, 34–44, doi:10.3762/bjnano.14.4

Graphical Abstract
  • fabricated with inexpensive photomasks. With this technology, we foresee that the straightforward generation of versatile nanoscale patterns can further push the boundaries of CLL, and expand its applications in solving conventional biosensing, nanoelectronics, and semiconductor problems. Visualization of
PDF
Album
Full Research Paper
Published 04 Jan 2023

Enhanced electronic transport properties of Te roll-like nanostructures

  • E. R. Viana,
  • N. Cifuentes and
  • J. C. González

Beilstein J. Nanotechnol. 2022, 13, 1284–1291, doi:10.3762/bjnano.13.106

Graphical Abstract
  • ), nanorods (NRs), nanowires (NWs), nanobelts (NBs), nanotubes (NTs), nanoflowers (NFs) and chiral nanostructures [6][7][8][9][10]. Trigonal tellurium (t-Te) MLs have also been recently proposed as a silicon successor for nanoelectronics because of their high hole mobility and current density [3]. Combining
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • detection limit and long-term stability at room temperature. Graphene oxide (GO), consisting of a monolayer of sp2-hybridized carbon atom network, has already been used in electrocatalysis, nanoelectronics, bionanosensors, and sustainable energy storage systems due to its larger active surface area
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

Approaching microwave photon sensitivity with Al Josephson junctions

  • Andrey L. Pankratov,
  • Anna V. Gordeeva,
  • Leonid S. Revin,
  • Dmitry A. Ladeynov,
  • Anton A. Yablokov and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2022, 13, 582–589, doi:10.3762/bjnano.13.50

Graphical Abstract
  • curves are obtained with the formula in Equation 2. Acknowledgements The samples were fabricated in the Chalmers Nanotechnology Center. The measurements were performed using the facilities of the Laboratory of Superconducting Nanoelectronics of NNSTU. The SEM image of the sample was obtained using the
PDF
Album
Full Research Paper
Published 04 Jul 2022

Impact of device design on the electronic and optoelectronic properties of integrated Ru-terpyridine complexes

  • Max Mennicken,
  • Sophia Katharina Peter,
  • Corinna Kaulen,
  • Ulrich Simon and
  • Silvia Karthäuser

Beilstein J. Nanotechnol. 2022, 13, 219–229, doi:10.3762/bjnano.13.16

Graphical Abstract
  • [5][6][7]. TP complexes, themselves or as hybrid materials with (semi)conducting species, are redox-active and, thus, enable applications in nanoelectronics and catalysis [8][9][10]. Among the suitable transition metal centers, Ru is highly attractive since Ru(TP)2-complexes show intense metal-to
  • of the respective devices. Our results reveal that the intrinsic properties of Ru(TP)2 complexes can be well preserved in Ru(TP)2–AuNP devices. We are convinced that this kind of devices based on functionalized AuNPs reveals the potential for the application in nanoelectronics or as sensors and we
PDF
Album
Supp Info
Full Research Paper
Published 15 Feb 2022

Effects of temperature and repeat layer spacing on mechanical properties of graphene/polycrystalline copper nanolaminated composites under shear loading

  • Chia-Wei Huang,
  • Man-Ping Chang and
  • Te-Hua Fang

Beilstein J. Nanotechnol. 2021, 12, 863–877, doi:10.3762/bjnano.12.65

Graphical Abstract
  • . Keywords: dislocation; graphene/Cu; molecular dynamics; shear; self-healing; Introduction Graphene is a monolayered hexagonal thin film composed of sp2-bonded carbon atoms and has extraordinary properties for applications in nanoelectronics [1][2][3][4][5][6]. However, because of the two-dimensional
PDF
Album
Full Research Paper
Published 12 Aug 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
PDF
Album
Review
Published 25 Jan 2021

Free and partially encapsulated manganese ferrite nanoparticles in multiwall carbon nanotubes

  • Saja Al-Khabouri,
  • Salim Al-Harthi,
  • Toru Maekawa,
  • Mohamed E. Elzain,
  • Ashraf Al-Hinai,
  • Ahmed D. Al-Rawas,
  • Abbsher M. Gismelseed,
  • Ali A. Yousif and
  • Myo Tay Zar Myint

Beilstein J. Nanotechnol. 2020, 11, 1891–1904, doi:10.3762/bjnano.11.170

Graphical Abstract
  • agents [4]. In addition, encapsulating magnetic nanoparticles inside carbon nanotubes enables the handling of the tubes via magnetic forces, thereby avoiding the alteration of their electronic or mechanical properties when using them in nanoelectronics [5]. Moreover, carbon nanotubes filled with magnetic
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2020

Molecular dynamics modeling of the influence forming process parameters on the structure and morphology of a superconducting spin valve

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Vladimir Boian,
  • Roman Morari and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1776–1788, doi:10.3762/bjnano.11.160

Graphical Abstract
  • nondissipative elements of spintronics, it is possible to create new superconducting nanoelectronics devices that consume minimum energy and have a high operation speed [8][9][10][11][12][13]. One type of magnetic nanostructure with wide potential use is the spin valve [14][15], consisting of several magnetic
PDF
Album
Full Research Paper
Published 24 Nov 2020

Functional nanostructures for electronics, spintronics and sensors

  • Anatolie S. Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1704–1706, doi:10.3762/bjnano.11.152

Graphical Abstract
  • Anatolie S. Sidorenko D. Ghitu Institute of Electronic Engineering and Nanotechnologies, Chisinau, Moldova and Orel State University, Orel, Russia 10.3762/bjnano.11.152 Keywords: functional nanostructures; nanoelectronics; post-Moore generation; sensors; spintronics; supercomputers
  • applications for quantum electronics and spintronics. In addition to these highlighted works, there are also other interesting functional nanostructures, sensors and quantum detectors presented, to highlight the fascinating world of nanoelectronics. The concept of this thematic issue emerged during the
PDF
Editorial
Published 10 Nov 2020

Ultrasensitive detection of cadmium ions using a microcantilever-based piezoresistive sensor for groundwater

  • Dinesh Rotake,
  • Anand Darji and
  • Nitin Kale

Beilstein J. Nanotechnol. 2020, 11, 1242–1253, doi:10.3762/bjnano.11.108

Graphical Abstract
  • . Comparison of different methods for cadmium detection. Funding The authors would like to thank Director of Indian Institute of Technology, Bombay for the support of atomic force microscopy under “Indian Nanoelectronics Users Program” and “Visvesvaraya Ph.D. Scheme for Electronics and IT” funded by the MeitY
PDF
Album
Full Research Paper
Published 18 Aug 2020

Microwave photon detection by an Al Josephson junction

  • Leonid S. Revin,
  • Andrey L. Pankratov,
  • Anna V. Gordeeva,
  • Anton A. Yablokov,
  • Igor V. Rakut,
  • Victor O. Zbrozhek and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2020, 11, 960–965, doi:10.3762/bjnano.11.80

Graphical Abstract
  • Leonid S. Revin Andrey L. Pankratov Anna V. Gordeeva Anton A. Yablokov Igor V. Rakut Victor O. Zbrozhek Leonid S. Kuzmin Institute for Physics of Microstructures of RAS, GSP-105, Nizhny Novgorod, 603950, Russia Center of Cryogenic Nanoelectronics, Nizhny Novgorod State Technical University, Nizhny
  • the measurements were performed using the facilities of the Center of Cryogenic Nanoelectronics of NNSTU. Funding The work is supported by Russian Science Foundation (Project No. 19-79-10170).
PDF
Album
Full Research Paper
Published 23 Jun 2020

High dynamic resistance elements based on a Josephson junction array

  • Konstantin Yu. Arutyunov and
  • Janne S. Lehtinen

Beilstein J. Nanotechnol. 2020, 11, 417–420, doi:10.3762/bjnano.11.32

Graphical Abstract
  • effect. Keywords: dynamic resistance; Josephson junction array; nanoelectronics; quantum phase slip; superconductivity; Ti nanowires; Introduction The field of modern nanoelectronics is facing stagnation with respect to further miniaturization, deviating from Moore’s law [1]. Typically, two main reason
PDF
Album
Full Research Paper
Published 03 Mar 2020

Anomalous current–voltage characteristics of SFIFS Josephson junctions with weak ferromagnetic interlayers

  • Tairzhan Karabassov,
  • Anastasia V. Guravova,
  • Aleksei Yu. Kuzin,
  • Elena A. Kazakova,
  • Shiro Kawabata,
  • Boris G. Lvov and
  • Andrey S. Vasenko

Beilstein J. Nanotechnol. 2020, 11, 252–262, doi:10.3762/bjnano.11.19

Graphical Abstract
  • sensitive electron thermometers [73]. However, junctions with a ferromagnetic interlayer as well as other normal metal junctions (for example, SFNFS), proposed as elements of novel superconducting nanoelectronics, have limited applicability since such junctions have low resistance values [74][75]. This
  • . acknowledges the hospitality of the Quantum nanoelectronics laboratory of the Moscow Institute of Electronics and Mathematics in the National Research University Higher School of Economics during his stay in Moscow.
PDF
Album
Full Research Paper
Published 23 Jan 2020

Nonequilibrium Kondo effect in a graphene-coupled quantum dot in the presence of a magnetic field

  • Levente Máthé and
  • Ioan Grosu

Beilstein J. Nanotechnol. 2020, 11, 225–239, doi:10.3762/bjnano.11.17

Graphical Abstract
  • graphene-based quantum dot system provides a platform for potential applications of nanoelectronics. Furthermore, we also propose an experimental setup for performing measurements in order to verify our model. Keywords: graphene; Kondo effect; magnetic field; pseudogap Anderson model; quantum dot
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2020

Molecular architectonics of DNA for functional nanoarchitectures

  • Debasis Ghosh,
  • Lakshmi P. Datta and
  • Thimmaiah Govindaraju

Beilstein J. Nanotechnol. 2020, 11, 124–140, doi:10.3762/bjnano.11.11

Graphical Abstract
  • , sensors, molecular or nanoelectronics, diagnostics, drug delivery, and biomedical sciences. The remarkable molecular fidelity and sequence-specific molecular recognition make DNA the ideal candidate in the scheme of molecular architectonics to design and construct functional DNA nanoarchitectures. In this
PDF
Album
Review
Published 09 Jan 2020

Nonlinear absorption and scattering of a single plasmonic nanostructure characterized by x-scan technique

  • Tushar C. Jagadale,
  • Dhanya S. Murali and
  • Shi-Wei Chu

Beilstein J. Nanotechnol. 2019, 10, 2182–2191, doi:10.3762/bjnano.10.211

Graphical Abstract
  • plasmonic nanostructures [4][5][6]. The potential applications of nonlinear nanoplasmonics include nanolasers [7], nanoantennas [8], surface plasmon polariton (SPP)-based waveguides [9], nanostructure-based optical limiters [10], nanoscopy instruments [11][12], and nanoelectronics as integrated optical
PDF
Album
Full Research Paper
Published 06 Nov 2019

First principles modeling of pure black phosphorus devices under pressure

  • Ximing Rong,
  • Zhizhou Yu,
  • Zewen Wu,
  • Junjun Li,
  • Bin Wang and
  • Yin Wang

Beilstein J. Nanotechnol. 2019, 10, 1943–1951, doi:10.3762/bjnano.10.190

Graphical Abstract
  • sensors; WKB approximation; Introduction Black phosphorus (BP) has been regarded as one of the most popular two-dimensional (2D) materials due to their unique properties and potential applications in many fields of nanoelectronics [1][2][3]. So far, many studies have been carried out to explore the
PDF
Album
Full Research Paper
Published 24 Sep 2019
Other Beilstein-Institut Open Science Activities