Search results

Search for "nanomaterials" in Full Text gives 555 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Crystalline and amorphous structure selectivity of ignoble high-entropy alloy nanoparticles during laser ablation in organic liquids is set by pulse duration

  • Robert Stuckert,
  • Felix Pohl,
  • Oleg Prymak,
  • Ulrich Schürmann,
  • Christoph Rehbock,
  • Lorenz Kienle and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2025, 16, 1141–1159, doi:10.3762/bjnano.16.84

Graphical Abstract
  • nanomaterials, usually consisting of single-phase solid solutions made of five or more elements, forming relatively simple face-centered cubic [6][7][8] (fcc) or body-centered cubic [9][10] (bcc) crystal structures, stabilized by the configurational part of Gibbs-free energy. It is worth noting that high
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2025

Piezoelectricity of hexagonal boron nitrides improves bone tissue generation as tested on osteoblasts

  • Sevin Adiguzel,
  • Nilay Cicek,
  • Zehra Cobandede,
  • Feray B. Misirlioglu,
  • Hulya Yilmaz and
  • Mustafa Culha

Beilstein J. Nanotechnol. 2025, 16, 1068–1081, doi:10.3762/bjnano.16.78

Graphical Abstract
  • be sufficient to repair the damage. To address this, the use of piezoelectric nanomaterials (NMs) in bone tissue engineering was investigated. In this study, the influence of the piezoelectric hexagonal boron nitrides (hBNs) and barium titanate (BaTiO3) on human osteoblasts (HOb) was comparatively
  • potential to accelerate bone tissue regeneration and promote bone healing. These findings offer a promising avenue for developing new therapies for bone-related injuries and conditions requiring significant bone remodeling. Keywords: bone healing; hexagonal boron nitrides; human osteoblasts; nanomaterials
  • , making them particularly attractive for biomedical applications. [21][22]. Barium titanate (BaTiO3) is one of the most well-known piezoelectric nanomaterials (NMs), characterized by a cubic structure with four polymorphs which change depending on the temperature and a high dielectric constant. All its
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2025

Soft materials nanoarchitectonics: liquid crystals, polymers, gels, biomaterials, and others

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2025, 16, 1025–1067, doi:10.3762/bjnano.16.77

Graphical Abstract
  • layer-by-layer fashion. LbL methods provide a nanoarchitectonics approach to the construction of functional composite nanomaterials with exceptional electrocatalytic properties. Azzaroni, Rafti, Marmisollé, and colleagues optimized the electrocatalytic properties of a conducting polymer by
PDF
Album
Review
Published 04 Jul 2025

A calix[4]arene-based supramolecular nanoassembly targeting cancer cells and triggering the release of nitric oxide with green light

  • Cristina Parisi,
  • Loredana Ferreri,
  • Tassia J. Martins,
  • Francesca Laneri,
  • Samantha Sollima,
  • Antonina Azzolina,
  • Antonella Cusimano,
  • Nicola D’Antona,
  • Grazia M. L. Consoli and
  • Salvatore Sortino

Beilstein J. Nanotechnol. 2025, 16, 1003–1013, doi:10.3762/bjnano.16.75

Graphical Abstract
  • , supramolecular nanoconstructs, and nanomaterials photoreleasing NO have been developed as potential nanomedicines over the last decades [40][41][42][43][44][45][46][47][48][49][50]. In this regard, generating NO with highly biocompatible long wavelength green or red light is highly desirable over blue or even UV
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2025

Time-resolved probing of laser-induced nanostructuring processes in liquids

  • Maximilian Spellauge,
  • David Redka,
  • Mianzhen Mo,
  • Changyong Song,
  • Heinz Paul Huber and
  • Anton Plech

Beilstein J. Nanotechnol. 2025, 16, 968–1002, doi:10.3762/bjnano.16.74

Graphical Abstract
  • Institute of Technology (KIT), Postfach 3640, D-76021 Karlsruhe, Germany 10.3762/bjnano.16.74 Abstract Laser synthesis and processing of colloids (LSPC) in liquids has gained widespread applications in producing nanomaterials of different classes of solids. While the technical processes in different cases
PDF
Album
Review
Published 02 Jul 2025

Facile one-step radio frequency magnetron sputtering of Ni/NiO on stainless steel for an efficient electrode for hydrogen evolution reaction

  • Ha Huu Do,
  • Khac Binh Nguyen,
  • Phuong N. Nguyen and
  • Hoai Phuong Pham

Beilstein J. Nanotechnol. 2025, 16, 837–846, doi:10.3762/bjnano.16.63

Graphical Abstract
  • may introduce a facile and eco-friendly strategy for fabricating noble metal-free, efficient nanomaterials for electrocatalytic HER. Keywords: electrocatalysts; magnetron sputtering; nickel; nickel oxide; water electrolysis; Introduction The world is facing a critical challenge through the
  • catalysts were recognized as the best material for electrochemical hydrogen evolution reaction (HER) [11][12][13]. However, it is challenging to use Pt-based nanomaterials for industrial applications because of their non-abundance and high cost. As a result, many studies have explored Pt-free catalysts
  • fabricated metal/metal oxide-based nanomaterials using various solution-based methods for alkaline HER because of the efficacy of metal oxides in breaking water molecules. In this context, Ni/NiO-based nanomaterials were evaluated as promising catalysts for industrial applications because of their Gibbs free
PDF
Album
Supp Info
Full Research Paper
Published 06 Jun 2025

Supramolecular hydration structure of graphene-based hydrogels: density functional theory, green chemistry and interface application

  • Hon Nhien Le,
  • Duy Khanh Nguyen,
  • Minh Triet Dang,
  • Huyen Trinh Nguyen,
  • Thi Bang Tam Dao,
  • Trung Do Nguyen,
  • Chi Nhan Ha Thuc and
  • Van Hieu Le

Beilstein J. Nanotechnol. 2025, 16, 806–822, doi:10.3762/bjnano.16.61

Graphical Abstract
  • repulsive hydration forces when another surface perturbs the hydration layers [6][7][8]. Hydration shells and hydration forces keep the hydrated structures stable and functional in the natural concert of biological processes. In the aspect of artificial nanomaterials, it is proposed that hydration also
  • plays an important role in the stability and functionality of nanoscale structures. Van der Waals forces are supramolecular intermolecular interactions that govern the agglomeration of nanomaterials. Carbon nanostructures with π-conjugated systems (fullerene, carbon nanotube, and graphene) have π–π
  • circular economy [18][19][20][21]. Especially, GO nanosheets decorated with SG-ZH nanoparticles have hydrophilic surfaces to retain hydration layers in the hydrogel structure of the GO-SG-ZH nanocomposite. Hydration layers in the GO-SG-ZH hydrogel also function as lubricants at the nanomaterials interfaces
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2025

Morphology and properties of pyrite nanoparticles obtained by pulsed laser ablation in liquid and thin films for photodetection

  • Akshana Parameswaran Sreekala,
  • Bindu Krishnan,
  • Rene Fabian Cienfuegos Pelaes,
  • David Avellaneda Avellaneda,
  • Josué Amílcar Aguilar-Martínez and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 785–805, doi:10.3762/bjnano.16.60

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 03 Jun 2025

Colloidal few layered graphene–tannic acid preserves the biocompatibility of periodontal ligament cells

  • Teissir Ben Ammar,
  • Naji Kharouf,
  • Dominique Vautier,
  • Housseinou Ba,
  • Nivedita Sudheer,
  • Philippe Lavalle and
  • Vincent Ball

Beilstein J. Nanotechnol. 2025, 16, 664–677, doi:10.3762/bjnano.16.51

Graphical Abstract
  • , 67034 Strasbourg Cedex 2 BP43, France 10.3762/bjnano.16.51 Abstract Dental diseases pose a global health concern. In addition to medication and care, the use of biocompatible and even bioactive dental materials can contribute to global oral health. Among such materials, nanomaterials begin to be used
  • transformative approach to enhance their efficacy [2]. Actually, incorporating nanomaterials into dental biomaterials has already offered advantages like enhanced tissue regeneration, increased mechanical strength of composites, and improved sealing of filler materials [3]. Graphene-based materials (GBMs) stand
  • found in Figure S6, Supporting Information File 1. To the best of our knowledge, no studies have reported this level of biocompatibility for FLG–TA within the dental context [4][31][32]. While earlier studies have examined the relationship between TA and carbon-based nanomaterials, they primarily
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2025

Focused ion and electron beams for synthesis and characterization of nanomaterials

  • Aleksandra Szkudlarek

Beilstein J. Nanotechnol. 2025, 16, 613–616, doi:10.3762/bjnano.16.47

Graphical Abstract
  • question, the co-guest editors Dr. Ivo Utke, Dr. Katja Höflich, Dr. Gregor Hlawacek, Dr. Nico Klingner, and myself organized a thematic issue in connection with the work presented at the joint meeting of the FIT4NANO (fit4nano – Focused Ion Technology for Nanomaterials) and FEBIP (Focused Electron Beam
  • etching or deposition. The precision and versatility of these beams, including the use of multiple gas species, open pathways to fabricate 3D nanomaterials that are unattainable through conventional chemical methods. However, achieving reproducibility in such structures requires a deep understanding of
PDF
Album
Editorial
Published 02 May 2025

Polyurethane/silk fibroin-based electrospun membranes for wound healing and skin substitute applications

  • Iqra Zainab,
  • Zohra Naseem,
  • Syeda Rubab Batool,
  • Muhammad Waqas,
  • Ahsan Nazir and
  • Muhammad Anwaar Nazeer

Beilstein J. Nanotechnol. 2025, 16, 591–612, doi:10.3762/bjnano.16.46

Graphical Abstract
  • discomfort of the patients during the procedure [170]. Besides wound healing, light-activated nanostructured biomaterials have promising applications in treating neural disorders. For example, in nerve tissue engineering, light-responsive scaffolds and nanomaterials facilitate neural stem cell proliferation
PDF
Album
Review
Published 24 Apr 2025

Feasibility analysis of carbon nanofiber synthesis and morphology control using a LPG premixed flame

  • Iftikhar Rahman Bishal,
  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Faizuan Bin Abdullah,
  • I Putu Tedy Indrayana and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2025, 16, 581–590, doi:10.3762/bjnano.16.45

Graphical Abstract
  • methane and ethylene. Though LPG is a commercially viable source for carbon-based nanomaterials, the understanding of the effects of a LPG flame on CNF growth is very limited. Therefore, the present study is to analyze the feasibility of CNF growth in a premixed LPG flame using a one-dimensional flame at
  • nucleation rate, which in turn increases the catalyst particle size and the amount of free carbon atoms, producing CNFs with larger diameters and amorphous carbon. According to Raman analysis, the grown CNFs have a high number of defects, which may be good for applications where defective nanomaterials are
  • combustion mode where the fuel and oxidizer are thoroughly mixed before ignition. LPG is a cheap industrial material used as a carbon source to produce carbon nanomaterials [6]. The application of CNFs includes, but is not limited to, energy storage in batteries and supercapacitors, electronics, drug
PDF
Album
Full Research Paper
Published 23 Apr 2025

Nanomaterials in targeting amyloid-β oligomers: current advances and future directions for Alzheimer's disease diagnosis and therapy

  • Shiwani Randhawa,
  • Trilok Chand Saini,
  • Manik Bathla,
  • Rahul Bhardwaj,
  • Rubina Dhiman and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2025, 16, 561–580, doi:10.3762/bjnano.16.44

Graphical Abstract
  • emphasized the importance of accurately identifying AβOs in patient samples, enhancing the potential for timely intervention. In recent years, nanomaterials (NMs) have emerged as promising agents for addressing AβOs regarding their multivalent interactions, which can more effectively detect and inhibit AβO
  • ; dissociation; nanomaterials; Review Introduction The etiology of Alzheimer’s disease (AD) has traditionally been linked to the presence of amyloid-β 42 (Aβ42), a protein widely recognized as a key marker of the disease. However, a growing body of recent scientific evidence suggests that it may be the amyloid
  • early detection and the identification of reliable biomarkers and therapeutic targets. Moreover, the blood–brain barrier (BBB) poses a significant obstacle to effective drug delivery, further hindering the development of successful treatments. Nanomaterials (NMs) offer promising solutions for the early
PDF
Album
Review
Published 22 Apr 2025

Quantification of lead through rod-shaped silver-doped zinc oxide nanoparticles using an electrochemical approach

  • Ravinder Lamba,
  • Gaurav Bhanjana,
  • Neeraj Dilbaghi,
  • Vivek Gupta and
  • Sandeep Kumar

Beilstein J. Nanotechnol. 2025, 16, 422–434, doi:10.3762/bjnano.16.33

Graphical Abstract
  • chemical substances [7][8]. Target detection in real time is a strong suit for electrochemical devices. Electron mediators are typically used to modify the working electrodes in electrochemical sensor fabrication. These days, due to their unique electrical and optical characteristics, nanomaterials are
  • electron microscopy (FESEM) image of the as-obtained nanomaterials. The produced nanomaterials had rod-shaped morphologies and were grown at extremely high densities, as seen by the SEM image. Figure 2b represents the average diameter of Ag@ZnO NRs which was calculated using the Image J software. The
PDF
Album
Full Research Paper
Published 26 Mar 2025

Size control of nanoparticles synthesized by pulsed laser ablation in liquids using donut-shaped beams

  • Abdel Rahman Altakroury,
  • Oleksandr Gatsa,
  • Farbod Riahi,
  • Zongwen Fu,
  • Miroslava Flimelová,
  • Andrei Samokhvalov,
  • Stephan Barcikowski,
  • Carlos Doñate-Buendía,
  • Alexander V. Bulgakov and
  • Bilal Gökce

Beilstein J. Nanotechnol. 2025, 16, 407–417, doi:10.3762/bjnano.16.31

Graphical Abstract
  • nanoparticles (NPs) with defined particle sizes and narrow size distribution width is driven by the growing integration of nanomaterials into various industrial applications, such as medicine [1][2][3], catalysis [4][5], sensors [6][7], and additive manufacturing [8]. The performance of NPs typically depends on
  • precise compositional control such as metastable binary core–shell NPs [16] and quinary Cantor high-entropy alloy NPs [17][18]. Such high-entropy nanomaterials are recently being discussed as game changers, providing disruptive design opportunities in multifunctional catalysts or magnetic materials [19
PDF
Album
Supp Info
Full Research Paper
Published 25 Mar 2025

Pulsed laser in liquid grafting of gold nanoparticle–carbon support composites

  • Madeleine K. Wilsey,
  • Teona Taseska,
  • Qishen Lyu,
  • Connor P. Cox and
  • Astrid M. Müller

Beilstein J. Nanotechnol. 2025, 16, 349–361, doi:10.3762/bjnano.16.26

Graphical Abstract
  • additional advantage of enabling pulsed laser decontamination and activation of surfaces, while concurrently exploiting the advantages of nanoparticle preparation by pulsed laser in liquid synthesis, including the many degrees of control to fabricate tailored nanomaterials [1]. Pulsed laser grafting advances
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2025

Graphene oxide–chloroquine conjugate induces DNA damage in A549 lung cancer cells through autophagy modulation

  • Braham Dutt Arya,
  • Sandeep Mittal,
  • Prachi Joshi,
  • Alok Kumar Pandey,
  • Jaime E. Ramirez-Vick,
  • Govind Gupta and
  • Surinder P. Singh

Beilstein J. Nanotechnol. 2025, 16, 316–332, doi:10.3762/bjnano.16.24

Graphical Abstract
  • pharmacokinetics, and reduced side effects. Nanomaterials can directly target DNA or inhibit the DDR and sensitize cancer cells to chemotherapeutics in multidrug resistant tumors [8][9][10]. Satapathay reported DNA damage and apoptotic cell death in HCT116 cells, human colorectal epithelial carcinoma cells, after
  • hydrophobicity, and C/O ratio) GO is internalized via clathrin or caveolae-mediated endocytosis and micropinocytosis [53]. The exposure to nanomaterials is known to affect plasma membrane integrity, which in turn initiates various metabolic processes, such as ineffective nutrient transport, unspecific molecular
  • activate the autophagy machinery as a survival mechanism [63]. However, accumulating evidence supports the fact that inhibition of autophagy by exposure to either nanomaterials or pharmacological inhibitors could potentially inhibit the activation of DNA-damage response mechanisms in different cancer cells
PDF
Album
Supp Info
Full Research Paper
Published 03 Mar 2025

Enhancing mechanical properties of chitosan/PVA electrospun nanofibers: a comprehensive review

  • Nur Areisman Mohd Salleh,
  • Amalina Muhammad Afifi,
  • Fathiah Mohamed Zuki and
  • Hanna Sofia SalehHudin

Beilstein J. Nanotechnol. 2025, 16, 286–307, doi:10.3762/bjnano.16.22

Graphical Abstract
  • PVA fiber mat failed at approximately 100% elongation, while the breaking strain increased to about 220% with the addition of chitosan and silk in the composite fibrous mat. Another technique for improving mechanical properties is the addition of fillers, such as nanomaterials. Reinforced polymeric
PDF
Album
Review
Published 26 Feb 2025

Emerging strategies in the sustainable removal of antibiotics using semiconductor-based photocatalysts

  • Yunus Ahmed,
  • Keya Rani Dutta,
  • Parul Akhtar,
  • Md. Arif Hossen,
  • Md. Jahangir Alam,
  • Obaid A. Alharbi,
  • Hamad AlMohamadi and
  • Abdul Wahab Mohammad

Beilstein J. Nanotechnol. 2025, 16, 264–285, doi:10.3762/bjnano.16.21

Graphical Abstract
  • to human health and ecological balance, requiring immediate and novel intervention techniques. Regarding this, semiconductor-based photocatalysts have appeared as promising candidates, providing a sustainable and efficient way to remove antibiotics from aquatic ecosystems. Nanomaterials can
PDF
Album
Review
Published 25 Feb 2025

Preferential enrichment and extraction of laser-synthesized nanoparticles in organic phases

  • Theo Fromme,
  • Maximilian L. Spiekermann,
  • Florian Lehmann,
  • Stephan Barcikowski,
  • Thomas Seidensticker and
  • Sven Reichenberger

Beilstein J. Nanotechnol. 2025, 16, 254–263, doi:10.3762/bjnano.16.20

Graphical Abstract
  • modify the nanomaterials in situ via chemical reactions of the nanoparticles with the molecules or solutes of the liquid. Particularly when organic solvents are used as liquids, photothermally induced C–C cleavage, addition or dehydrogenation reactions of the solvents, as well as (carbon
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2025

Radiosensitizing properties of dual-functionalized carbon nanostructures loaded with temozolomide

  • Radmila Milenkovska,
  • Nikola Geskovski,
  • Dushko Shalabalija,
  • Ljubica Mihailova,
  • Petre Makreski,
  • Dushko Lukarski,
  • Igor Stojkovski,
  • Maja Simonoska Crcarevska and
  • Kristina Mladenovska

Beilstein J. Nanotechnol. 2025, 16, 229–251, doi:10.3762/bjnano.16.18

Graphical Abstract
  • incorporation of TMZ in organic and inorganic nanomaterials and their hybrids, designed in a wide variety of shapes such as nanoparticles (NPs), conjugates, dendrimers, and liposomes [35]. With various bioengineering techniques, the nanomaterials’ size, shape, and surface properties were modified to improve
  • ; MWCNTs interact with tubulin and actin, causing cell apoptosis, which was confirmed in vitro [71][72] and in vivo [73][74]. In addition, genotoxic effects of CNTs have been identified by direct interaction with DNA [68]. For the G-family nanomaterials, induction of cell death, including apoptosis and
PDF
Album
Full Research Paper
Published 19 Feb 2025

Synthesis and the impact of hydroxyapatite nanoparticles on the viability and activity of rhizobacteria

  • Bedah Rupaedah,
  • Indrika Novella,
  • Atiek Rostika Noviyanti,
  • Diana Rakhmawaty Eddy,
  • Anna Safarrida,
  • Abdul Hapid,
  • Zhafira Amila Haqqa,
  • Suryana Suryana,
  • Irwan Kurnia and
  • Fathiyah Inayatirrahmi

Beilstein J. Nanotechnol. 2025, 16, 216–228, doi:10.3762/bjnano.16.17

Graphical Abstract
  • microorganisms. Nanomaterials, particularly nanohydroxyapatite (nHA), have garnered attention for sustaining rhizobacterial viability, high loading capacity, high biodegradability, and biocompatibility, which facilitate microbial interactions. In this study, nHA was synthesized using a hydrothermal method and
  • viable alternative to reduce the dependence on chemical fertilizers [5]. In recent years, there has been a notable increase in interest regarding the utilization of nanomaterials as carrier materials. Nanometer-sized carriers offer a substantial surface area and demonstrate exceptional compatibility
  • application and storage [7]. Nanomaterials have gained significant attention in the development of rhizobacterial carrier materials, as their effective utilization can provide protective benefits to plants, assist in nutrient absorption, and, when in gel form, significantly improve water management efficiency
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2025

Recent advances in photothermal nanomaterials for ophthalmic applications

  • Jiayuan Zhuang,
  • Linhui Jia,
  • Chenghao Li,
  • Rui Yang,
  • Jiapeng Wang,
  • Wen-an Wang,
  • Heng Zhou and
  • Xiangxia Luo

Beilstein J. Nanotechnol. 2025, 16, 195–215, doi:10.3762/bjnano.16.16

Graphical Abstract
  • nanomaterials, particularly well-suited for the transparent tissues of the eye, have emerged as a potential game changer. These materials enable precise and controllable photothermal therapy by effectively manipulating the distribution of the thermal field. Moreover, they extend beyond the conventional
  • the photothermal properties of these nanomaterials and their innovative therapeutic mechanisms. We review the latest research on photothermal nanomaterial-based treatments for various eye diseases. Additionally, we discuss the current challenges and future perspectives in this field, with a focus on
  • treatments pose significant barriers [5]. The evolution of nanotechnology has catalyzed the development of novel therapeutic technologies, with a plethora of nanomaterials exhibiting significant potential for nanotherapeutic applications [6][7][8]. Among these, photothermal nanomaterials hold promise in
PDF
Album
Review
Published 17 Feb 2025

Nanocarriers and macrophage interaction: from a potential hurdle to an alternative therapeutic strategy

  • Naths Grazia Sukubo,
  • Paolo Bigini and
  • Annalisa Morelli

Beilstein J. Nanotechnol. 2025, 16, 97–118, doi:10.3762/bjnano.16.10

Graphical Abstract
  • affect NP internalization. They actively engulf NCs and accelerate their clearance, acting differentially in a time-dependent manner and altering the fate of nanomaterials [26]. In addition to immune-related barriers, the physicochemical properties of the nanomaterial itself can impair the NCs’ ability
  • production, effectively reducing collagen type I deposition and mitigating fibrosis. Additional nanomaterials such as superparamagnetic iron oxide nanoparticles (SPIONs) and chitosan-based NPs are engineered with liver-cell-specific ligands like lactose or galactose, enhancing their specificity for treating
PDF
Album
Review
Published 31 Jan 2025

Modeling and simulation of carbon-nanocomposite-based gas sensors

  • Roopa Hegde,
  • Punya Prabha V,
  • Shipra Upadhyay and
  • Krishna S B

Beilstein J. Nanotechnol. 2025, 16, 90–96, doi:10.3762/bjnano.16.9

Graphical Abstract
  • nanomaterials, such as carbon nanotubes (CNTs), graphene, and carbon black, embedded within a polymer matrix [1]. The distinctive properties of carbon nanocomposites have positioned them as promising candidates for various applications, particularly in the development of advanced sensors. The small amounts of
PDF
Album
Full Research Paper
Published 30 Jan 2025
Other Beilstein-Institut Open Science Activities