Search results

Search for "nanomechanics" in Full Text gives 17 result(s) in Beilstein Journal of Nanotechnology.

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • to other probes, which can link macromechanics, micromechanics and nanomechanics well under certain conditions. Conventional AFM probes used for interaction force testing have sharp tips and have a small contact area with the surface contact. To study interaction properties on the surface of micro
PDF
Album
Review
Published 03 Nov 2022

Nanomechanics of few-layer materials: do individual layers slide upon folding?

  • Ronaldo J. C. Batista,
  • Rafael F. Dias,
  • Ana P. M. Barboza,
  • Alan B. de Oliveira,
  • Taise M. Manhabosco,
  • Thiago R. Gomes-Silva,
  • Matheus J. S. Matos,
  • Andreij C. Gadelha,
  • Cassiano Rabelo,
  • Luiz G. L. Cançado,
  • Ado Jorio,
  • Hélio Chacham and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2020, 11, 1801–1808, doi:10.3762/bjnano.11.162

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 30 Nov 2020

Evidence of friction reduction in laterally graded materials

  • Roberto Guarino,
  • Gianluca Costagliola,
  • Federico Bosia and
  • Nicola Maria Pugno

Beilstein J. Nanotechnol. 2018, 9, 2443–2456, doi:10.3762/bjnano.9.229

Graphical Abstract
  • Roberto Guarino Gianluca Costagliola Federico Bosia Nicola Maria Pugno Laboratory of Bio-Inspired & Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy Department of Physics and Nanostructured Interfaces
PDF
Album
Supp Info
Full Research Paper
Published 13 Sep 2018

Tuning adhesion forces between functionalized gold colloidal nanoparticles and silicon AFM tips: role of ligands and capillary forces

  • Sven Oras,
  • Sergei Vlassov,
  • Marta Berholts,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2018, 9, 660–670, doi:10.3762/bjnano.9.61

Graphical Abstract
  • drop-casting. Adhesion was measured by a Bruker Multimode 8 AFM with the Peakforce Quantitative Nanomechanics (PeakForce QNM) mode. PeakForce QNM mode is a recent advancement in AFM method providing quantitative nanomechanical mapping mode with the simultaneous measurement of the sample’s adhesion
  • software). Supporting Information Supporting Information File 126: PeakForce QNM (Quantitative NanoMechanics). Acknowledgements The work is supported by The Centre National de la Recherche Scientifique (CNRS) of France, and the French Emabssy Program. The authors are also grateful for partial support by
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2018

Functional dependence of resonant harmonics on nanomechanical parameters in dynamic mode atomic force microscopy

  • Federico Gramazio,
  • Matteo Lorenzoni,
  • Francesc Pérez-Murano,
  • Enrique Rull Trinidad,
  • Urs Staufer and
  • Jordi Fraxedas

Beilstein J. Nanotechnol. 2017, 8, 883–891, doi:10.3762/bjnano.8.90

Graphical Abstract
  • below 20 GPa). Keywords: atomic force microscopy; metrology; multifrequency; nanomechanics; Introduction When an AFM cantilever oscillating freely and harmonically at a given frequency f and amplitude A1 approaches a solid surface, the oscillation becomes anharmonic due to the non-linear interaction
PDF
Album
Supp Info
Full Research Paper
Published 19 Apr 2017

Dispersion of single-wall carbon nanotubes with supramolecular Congo red – properties of the complexes and mechanism of the interaction

  • Anna Jagusiak,
  • Barbara Piekarska,
  • Tomasz Pańczyk,
  • Małgorzata Jemioła-Rzemińska,
  • Elżbieta Bielańska,
  • Barbara Stopa,
  • Grzegorz Zemanek,
  • Janina Rybarska,
  • Irena Roterman and
  • Leszek Konieczny

Beilstein J. Nanotechnol. 2017, 8, 636–648, doi:10.3762/bjnano.8.68

Graphical Abstract
  • ) was conducted on a FEI Tecnai Osiris G2 20 TWIN. Atomic force microscopy (AFM) was conducted on a Dimension FastScan or Dimension ICON (Bruker Nano, Santa Barbara, California). Surface of carbon nanotubes was visualised in Peak Force QNM (Quantitative NanoMechanics) mode, allowing the simultaneous
PDF
Album
Full Research Paper
Published 16 Mar 2017

Generalized Hertz model for bimodal nanomechanical mapping

  • Aleksander Labuda,
  • Marta Kocuń,
  • Waiman Meinhold,
  • Deron Walters and
  • Roger Proksch

Beilstein J. Nanotechnol. 2016, 7, 970–982, doi:10.3762/bjnano.7.89

Graphical Abstract
  • experimental data and extract a shape and size of the tip interacting with a polystyrene surface. Keywords: bimodal atomic force microscopy; bimodal spectroscopy; contact mechanics; multifrequency; nanomechanical mapping; nanomechanics; Introduction Over the decades since its invention [1] the atomic force
PDF
Album
Full Research Paper
Published 05 Jul 2016

Nanoscale rippling on polymer surfaces induced by AFM manipulation

  • Mario D’Acunto,
  • Franco Dinelli and
  • Pasqualantonio Pingue

Beilstein J. Nanotechnol. 2015, 6, 2278–2289, doi:10.3762/bjnano.6.234

Graphical Abstract
  • phenomenon is still far from being achieved. This review aims at summarizing the current state of the art in the perspective of achieving control over the rippling process on polymers at a nanoscale level. Keywords: atomic force microscopy (AFM); films; nanomanipulation; nanomechanics; polymers; ripples
PDF
Album
Review
Published 02 Dec 2015

Dynamic force microscopy simulator (dForce): A tool for planning and understanding tapping and bimodal AFM experiments

  • Horacio V. Guzman,
  • Pablo D. Garcia and
  • Ricardo Garcia

Beilstein J. Nanotechnol. 2015, 6, 369–379, doi:10.3762/bjnano.6.36

Graphical Abstract
  • simulations. Finally, the accuracy of dForce has been tested against numerical simulations performed during the last 18 years. Keywords: bimodal AFM; dynamic AFM; nanomechanics; numerical simulations; tapping mode AFM; Introduction Numerical simulations have played a pivotal role to advance the
PDF
Album
Full Research Paper
Published 04 Feb 2015
Graphical Abstract
  • of the finite-range attraction. The results can benefit the interpretation of atomic force microscopy in liquid environments and the modeling of multi-asperity contacts. Keywords: cohesive zone model; contact mechanics; environmental; fluid squeeze-out; nanomechanics; single-asperity contacts
PDF
Album
Full Research Paper
Published 08 Apr 2014

Manipulation of nanoparticles of different shapes inside a scanning electron microscope

  • Boris Polyakov,
  • Sergei Vlassov,
  • Leonid M. Dorogin,
  • Jelena Butikova,
  • Mikk Antsov,
  • Sven Oras,
  • Rünno Lõhmus and
  • Ilmar Kink

Beilstein J. Nanotechnol. 2014, 5, 133–140, doi:10.3762/bjnano.5.13

Graphical Abstract
  • method for the investigation of the mobility of nano-objects on solid substrates and it is contributing to a deeper understanding of nanomechanics and nanotribology [1]. Thanks to the rapid progress in the synthesis of NPs, there is a wide choice of materials, structures, compositions, shapes and
PDF
Album
Supp Info
Full Research Paper
Published 05 Feb 2014

Peak forces and lateral resolution in amplitude modulation force microscopy in liquid

  • Horacio V. Guzman and
  • Ricardo Garcia

Beilstein J. Nanotechnol. 2013, 4, 852–859, doi:10.3762/bjnano.4.96

Graphical Abstract
  • microscopy; lateral resolution; nanomechanics; peak force; Introduction The high-resolution imaging of heterogeneous materials, in particular soft materials in liquid, by amplitude modulation atomic force microscopy (AM-AFM) is an active area of research in nanotechnology [1][2][3][4][5][6][7][8][9][10][11
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2013

Dynamic nanoindentation by instrumented nanoindentation and force microscopy: a comparative review

  • Sidney R. Cohen and
  • Estelle Kalfon-Cohen

Beilstein J. Nanotechnol. 2013, 4, 815–833, doi:10.3762/bjnano.4.93

Graphical Abstract
  • limited to, optical tweezers [1], surface force apparatus [2][3], nanomanipulators [4], electron and other microscopy techniques. Two techniques which have made great advances in the studies of nanomechanics are instrumented nanoindentation and scanning probe microscopy. The versatility and utility of
PDF
Album
Review
Published 29 Nov 2013

Direct monitoring of opto-mechanical switching of self-assembled monolayer films containing the azobenzene group

  • Einat Tirosh,
  • Enrico Benassi,
  • Silvio Pipolo,
  • Marcel Mayor,
  • Michal Valášek,
  • Veronica Frydman,
  • Stefano Corni and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2011, 2, 834–844, doi:10.3762/bjnano.2.93

Graphical Abstract
  • bonds and from intermolecular interactions in the film. These results demonstrate the power and insights gained from cutting-edge AFM technologies, and advanced computational methods. Keywords: AFM; azobenzene; elastic modulus; molecular dynamics; nanomechanics; photoswitch; quantum mechanics
PDF
Album
Full Research Paper
Published 20 Dec 2011

Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: influence of particle–substrate chemistry and morphology, and of operating conditions

  • Samer Darwich,
  • Karine Mougin,
  • Akshata Rao,
  • Enrico Gnecco,
  • Shrisudersan Jayaraman and
  • Hamidou Haidara

Beilstein J. Nanotechnol. 2011, 2, 85–98, doi:10.3762/bjnano.2.10

Graphical Abstract
  • from our experimental results. Conclusion The manipulation of nano-objects is still a relatively rare operation. Because micro/nanomechanics has not been completely well-developed, two-dimensional positioning of nanometer-size particles on a substrate at ambient conditions remains a difficult operation
PDF
Album
Full Research Paper
Published 04 Feb 2011

Scanning probe microscopy and related methods

  • Ernst Meyer

Beilstein J. Nanotechnol. 2010, 1, 155–157, doi:10.3762/bjnano.1.18

Graphical Abstract
  • gives insight into fascinating phenomena, such as metal-superconductor transitions or metal-insulator transitions. Another important development is related to nanomechanics, where phenomena, such as friction, wear, elasticity and plasticity are studied on an atomic scale. Atomic friction has been
PDF
Album
Editorial
Published 22 Dec 2010

Sensing surface PEGylation with microcantilevers

  • Natalija Backmann,
  • Natascha Kappeler,
  • Thomas Braun,
  • François Huber,
  • Hans-Peter Lang,
  • Christoph Gerber and
  • Roderick Y. H. Lim

Beilstein J. Nanotechnol. 2010, 1, 3–13, doi:10.3762/bjnano.1.2

Graphical Abstract
  • layer formation, a direct determination of local morphology/conformation changes in the polymer layer is largely restricted to nanomechanics-based techniques such as the surface force apparatus [9] and atomic force microscopy (AFM) [10]. Developments in the quartz crystal microbalance with dissipation
  • collapse was validated and shown to be reversible using microcantilever sensors. Our work suggests how microcantilever sensors may be applied to studying the kinetics and nanomechanics of natively unfolded proteins and other brush-forming molecules. Experimental Materials. Phosphate-buffered saline (PBS
PDF
Album
Video
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities