Search results

Search for "nanoribbon" in Full Text gives 31 result(s) in Beilstein Journal of Nanotechnology.

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • . Foster, Kawai, and co-workers have investigated the zero-bias peak at the center of an armchair-type graphene nanoribbon on a AuSix/Au(111) surface using a combination of low-temperature scanning tunneling microscopy/spectroscopy and density functional theory calculations [116]. The zero-bias peak at the
  • boron site embedded at the center of the graphene nanoribbon was investigated. Si atoms were removed by vertical manipulation with a tip (Figure 5). In this manipulation, the tip was positioned at a silicon site and then moved closer to the silicon atoms while recording the tunneling current. After the
  • cove-shaped two-dimensional graphene nanoribbon networks by interconnecting one-dimensional self-assembled graphene nanoribbons on a Au(111) surface [121]. The structure of the two-dimensional graphene nanoribbon network consists of hybrid junctions of graphene nanoribbons of various widths, exhibiting
PDF
Album
Review
Published 03 Apr 2023

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
PDF
Album
Review
Published 02 Jul 2021

A new photodetector structure based on graphene nanomeshes: an ab initio study

  • Babak Sakkaki,
  • Hassan Rasooli Saghai,
  • Ghafar Darvish and
  • Mehdi Khatir

Beilstein J. Nanotechnol. 2020, 11, 1036–1044, doi:10.3762/bjnano.11.88

Graphical Abstract
  • GNMs have both metallic and semiconducting properties depending on the arrangements of perforations. Also, absorption spectrum analysis indicates attractive infrared peaks for GNMs with semiconducting characteristics, making them better photodetectors than graphene nanoribbon (GNR)-based alternatives
  • makes it suitable for optical devices. Keywords: absorption spectra; DFT calculations; graphene nanomesh; graphene nanoribbon; photodetectors; Introduction Graphene monolayers with honeycomb crystal structure have unique electrical and optical properties and have received a lot of attention recently
  • GNMs have been studied in devices such as transistors with GNM channels. The devices have been shown to have a higher on–off current than graphene transistors or nanoribbon transistors (approximately 100-fold). Detectors in which GNMs are used as the transmission channel have also been reported [24
PDF
Album
Full Research Paper
Published 15 Jul 2020
Graphical Abstract
  • heterojunction; armchair boron nitride nanoribbon (ABNNR); armchair graphene nanoribbon (AGNR); negative differential resistance (NDR); nonequilibrium Green’s function (NEGF); resonant tunneling diode (RTD); substitutional defects; Introduction 2D materials have gained tremendous research interest due to the
PDF
Album
Full Research Paper
Published 24 Apr 2020

Nanoarchitectonics: bottom-up creation of functional materials and systems

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2020, 11, 450–452, doi:10.3762/bjnano.11.36

Graphical Abstract
  • , the chiral structure was found to control the self-assembly of nitrocinnamic amide amphiphiles [25]. Works related to the formation of higher-dimensional materials included, for example, the self-assembly of crystalline cellulose oligomers that resulted in nanoribbon networks [26], silicon nanowires
PDF
Album
Editorial
Published 12 Mar 2020

Correction: Biocatalytic oligomerization-induced self-assembly of crystalline cellulose oligomers into nanoribbon networks assisted by organic solvents

  • Yuuki Hata,
  • Yuka Fukaya,
  • Toshiki Sawada,
  • Masahito Nishiura and
  • Takeshi Serizawa

Beilstein J. Nanotechnol. 2020, 11, 370–371, doi:10.3762/bjnano.11.27

Graphical Abstract
  • Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan DKS Co. Ltd., 5 Ogawaracho, Kisshoin, Minami-ku, Kyoto-shi, Kyoto 601-8391, Japan 10.3762/bjnano.11.27 Keywords: cellulose oligomer; gel; nanoarchitectonics; nanoribbon networks
PDF
Album
Original
Article
Correction
Published 19 Feb 2020

Biocatalytic oligomerization-induced self-assembly of crystalline cellulose oligomers into nanoribbon networks assisted by organic solvents

  • Yuuki Hata,
  • Yuka Fukaya,
  • Toshiki Sawada,
  • Masahito Nishiura and
  • Takeshi Serizawa

Beilstein J. Nanotechnol. 2019, 10, 1778–1788, doi:10.3762/bjnano.10.173

Graphical Abstract
  • self-assembly of cellulose oligomers into hierarchical nanoribbon network structures. In this study, we dealt with the cellodextrin phosphorylase-catalyzed oligomerization of phosphorylated glucose monomers from ᴅ-glucose primers, which produce precipitates of nanosheet-shaped crystals in aqueous
  • solution. The addition of appropriate organic solvents to the oligomerization system was found to result in well-grown nanoribbon networks. The organic solvents appeared to prevent irregular aggregation and subsequent precipitation of the nanosheets via solvation for further growth into the well-grown
  • ; nanoribbon networks; oligomerization-induced self-assembly; organic solvent; Introduction Nanoarchitectonics is an emerging concept based on nanotechnology and other scientific fields, such as supramolecular chemistry, for constructing functional materials and systems in a bottom-up manner with the
PDF
Album
Correction
Full Research Paper
Published 26 Aug 2019

Electronic properties of several two dimensional halides from ab initio calculations

  • Mohamed Barhoumi,
  • Ali Abboud,
  • Lamjed Debbichi,
  • Moncef Said,
  • Torbjörn Björkman,
  • Dario Rocca and
  • Sébastien Lebègue

Beilstein J. Nanotechnol. 2019, 10, 823–832, doi:10.3762/bjnano.10.82

Graphical Abstract
  • external electric field to a rippled MoS2 monolayer [45] or a MoS2 nanoribbon [46][47] causes important changes in the electronic structure and reduces the bandgap. Also, applying an electric field to a 2D material mimics the presence of a gate voltage [48], and understanding the resulting changes in the
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2019

A carrier velocity model for electrical detection of gas molecules

  • Ali Hosseingholi Pourasl,
  • Sharifah Hafizah Syed Ariffin,
  • Mohammad Taghi Ahmadi,
  • Razali Ismail and
  • Niayesh Gharaei

Beilstein J. Nanotechnol. 2019, 10, 644–653, doi:10.3762/bjnano.10.64

Graphical Abstract
  • remarkable changes in their electrical characteristics when exposed to different gases through molecular adsorption. In this paper, the adsorption effects of the target gas molecules (CO and NO) on the electrical properties of the armchair graphene nanoribbon (AGNR)-based sensor are analytically modelled
  • armchair graphene nanoribbon based field effect transistor (AGNR-FET) is used as the sensor platform. Modelling and Formalism In this study, AGNR as a 1D carbon material that contains a pair of atoms in the unit cell is incorporated with the assumption that for each carbon atom there is only one orbital
  • between the proposed model and first principles method showed an acceptable agreement between the results. Therefore, the proposed models in this research can be used to develop modern sensors based on the new materials. Illustration of the gas molecule adsorption on the armchair graphene nanoribbon (AGNR
PDF
Album
Full Research Paper
Published 04 Mar 2019

Metal-free catalysis based on nitrogen-doped carbon nanomaterials: a photoelectron spectroscopy point of view

  • Mattia Scardamaglia and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2018, 9, 2015–2031, doi:10.3762/bjnano.9.191

Graphical Abstract
  • nanoribbon. Kim et al. compared the catalytic activity of graphitic N localized at different sites with respect to the graphene nanoribbon edge reporting. They found that the catalytically most active sites are those near the edges, the outermost graphitic or graphitic valley N atoms [112]. Their results are
PDF
Album
Review
Published 18 Jul 2018

Recent highlights in nanoscale and mesoscale friction

  • Andrea Vanossi,
  • Dirk Dietzel,
  • Andre Schirmeisen,
  • Ernst Meyer,
  • Rémy Pawlak,
  • Thilo Glatzel,
  • Marcin Kisiel,
  • Shigeki Kawai and
  • Nicola Manini

Beilstein J. Nanotechnol. 2018, 9, 1995–2014, doi:10.3762/bjnano.9.190

Graphical Abstract
PDF
Album
Review
Published 16 Jul 2018

Robust topological phase in proximitized core–shell nanowires coupled to multiple superconductors

  • Tudor D. Stanescu,
  • Anna Sitek and
  • Andrei Manolescu

Beilstein J. Nanotechnol. 2018, 9, 1512–1526, doi:10.3762/bjnano.9.142

Graphical Abstract
  • superconductors. A non-zero phase difference was shown to stabilize the topological phase in a Josephson junction across a 2D electron gas with Rashba spin-orbit coupling and in-plane magnetic field [42] and in a topological insulator nanoribbon coupled with two superconductors [43]. Here, for concreteness, we
PDF
Album
Full Research Paper
Published 22 May 2018

Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches – materials solutions and operational conditions

  • Liga Jasulaneca,
  • Jelena Kosmaca,
  • Raimonds Meija,
  • Jana Andzane and
  • Donats Erts

Beilstein J. Nanotechnol. 2018, 9, 271–300, doi:10.3762/bjnano.9.29

Graphical Abstract
PDF
Album
Review
Published 25 Jan 2018

Structural model of silicene-like nanoribbons on a Pb-reconstructed Si(111) surface

  • Agnieszka Stępniak-Dybala and
  • Mariusz Krawiec

Beilstein J. Nanotechnol. 2017, 8, 1836–1843, doi:10.3762/bjnano.8.185

Graphical Abstract
  • , and suppress the nanoribbon–substrate interaction. The proposed structural model reproduces well all the experimental findings. Keywords: density functional theory (DFT); scanning tunneling microscopy (STM); silicene; Si nanoribbons; Introduction The discovery of the exotic nature of graphene [1][2
  • topography. The nanoribbons are directly bonded to the substrate, while Pb atoms stabilize the system by passivating the uncovered substrate and donating electrons to Si atoms. Thus, they lower the surface energy and suppress the nanoribbon–substrate interaction. The proposed model reproduces well all the
  • Si(111) surface. (b) Line profile along blue arrow marked in the inset of (a). The arrow points in the direction. The unit cell of a nanoribbon is also marked in the inset of (a). (c, d) Results of a simultaneously measured topography and dI/dz map of the same area. Scanning parameters were U = 1 V
PDF
Album
Full Research Paper
Published 05 Sep 2017

Transport characteristics of a silicene nanoribbon on Ag(110)

  • Ryoichi Hiraoka,
  • Chun-Liang Lin,
  • Kotaro Nakamura,
  • Ryo Nagao,
  • Maki Kawai,
  • Ryuichi Arafune and
  • Noriaki Takagi

Beilstein J. Nanotechnol. 2017, 8, 1699–1704, doi:10.3762/bjnano.8.170

Graphical Abstract
  • discuss the origin of the peak as it relates to the SiNR. Keywords: nanojunction; nanoribbon; scanning tunnelling microscopy; silicene; transport; Introduction The electronic transport characteristics of nanomaterials from a single molecule, nanowires, nanotubes, and nanoribbons to two-dimensional (2D
  • preserves the electronic states localized at the edges near the Fermi level similar to the graphene nanoribbon with zigzag edges [29][30][31][32][33]. Although the electronic structure of SiNR has been studied experimentally [34][35][36], the existence of edge states remains an open question. The
PDF
Album
Full Research Paper
Published 16 Aug 2017

Tunable plasmons in regular planar arrays of graphene nanoribbons with armchair and zigzag-shaped edges

  • Cristian Vacacela Gomez,
  • Michele Pisarra,
  • Mario Gravina and
  • Antonello Sindona

Beilstein J. Nanotechnol. 2017, 8, 172–182, doi:10.3762/bjnano.8.18

Graphical Abstract
  • in nanoscale architectures of nanoribbon devices. Keywords: graphene nanoribbons; plasmonics; time-dependent density functional theory; Introduction Quantized, coherent and collective density fluctuations of the valence electrons in low-dimensional nanostructures, better known as plasmons, have
PDF
Album
Full Research Paper
Published 17 Jan 2017

Zigzag phosphorene nanoribbons: one-dimensional resonant channels in two-dimensional atomic crystals

  • Carlos. J. Páez,
  • Dario. A. Bahamon,
  • Ana L. C. Pereira and
  • Peter. A. Schulz

Beilstein J. Nanotechnol. 2016, 7, 1983–1990, doi:10.3762/bjnano.7.189

Graphical Abstract
  • confining segment coupled to an infinite (not segmented) edge and, (ii) the properties of an infinite narrow nanoribbon with strongly coupled edges. These results are independent of the area of the device region. They solely depend on the length of the segmented region and distance between the edges
  • , revealing an effective chain-like behavior of the edges of the nanoribbons. In what follows, we initially discuss the “bulk” electronic properties of a phosphorene nanoribbon. We present the model calculation framework, as well as the effects of edge coupling on the conductance of these infinite zigzag
  • infinite zigzag edged phosphorene nanoribbon of width NZ = 8, which is the number of zigzag chains along the ribbon. The tight-binding hopping parameters considered, as discussed below, are indicated in Figure 1b. The quite complex electronic structure of phosphorene, already at energy ranges rather close
PDF
Album
Full Research Paper
Published 13 Dec 2016

Current-induced runaway vibrations in dehydrogenated graphene nanoribbons

  • Rasmus Bjerregaard Christensen,
  • Jing-Tao Lü,
  • Per Hedegård and
  • Mads Brandbyge

Beilstein J. Nanotechnol. 2016, 7, 68–74, doi:10.3762/bjnano.7.8

Graphical Abstract
  • dehydrogenated armchair graphene nanoribbon. All parameters are obtained from density functional theory. The dehydrogenated carbon dimers behave as effective impurities, whose motion decouples from the rest of carbon atoms. The electrical current can couple the dimer motion in a coherent fashion. The coupling
  • motion of the dehydrogenated carbon dimer at the nanoribbon boundaries are relatively decoupled from other dimers and also from the rest carbon atoms. This results in several nearly degenerate atomic vibrations, where each of these involves mainly one dimer. However, a coupling of the dimer vibrations
  • takes place via the flowing electrical current. All these features are favorable to observe the effect of current-induced forces, thus making armchair nanoribbon an ideal candidate to study. In the rest of the paper, we summarize our theoretical (section “Theory”) and numerical (section “Numerical
PDF
Album
Letter
Published 20 Jan 2016

High Ion/Ioff current ratio graphene field effect transistor: the role of line defect

  • Mohammad Hadi Tajarrod and
  • Hassan Rasooli Saghai

Beilstein J. Nanotechnol. 2015, 6, 2062–2068, doi:10.3762/bjnano.6.210

Graphical Abstract
  • Mohammad Hadi Tajarrod Hassan Rasooli Saghai Department of Electrical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran 10.3762/bjnano.6.210 Abstract The present paper casts light upon the performance of an armchair graphene nanoribbon (AGNR) field effect transistor in the
  • moments on the line defect were amplified by strain, coupling this with the edge magnetic moments caused a modification of the spin polarization on one edge [15]. Some studies investigating the effect of line defects on zigzag nanoribbon could have been motivated by the fact that the line defect develops
  • channel, which contains a 5–8–5 extended line defect in the center of the armchair graphene nanoribbon. The C–C bond lengths in the line defect are between 1.43–1.83 Å, that indicating sp2 hybridization [18]. The tight-binding model with the first nearest-neighbor approximation was used to model the
PDF
Album
Full Research Paper
Published 23 Oct 2015

Electron and heat transport in porphyrin-based single-molecule transistors with electro-burnt graphene electrodes

  • Hatef Sadeghi,
  • Sara Sangtarash and
  • Colin J. Lambert

Beilstein J. Nanotechnol. 2015, 6, 1413–1420, doi:10.3762/bjnano.6.146

Graphical Abstract
  • the EBG electrodes, first a sufficiently high bias voltage is applied to create cracks in the naoribbon. This usually happens in the centre of the nanoribbon due to the higher temperature induced in this region [19]. This high temperature in the constricted part of the graphene nanoribbon causes the
  • carbon atoms to instantaneously react with atmospheric oxygen, resulting in combustion. A feedback signal is used to impede this oxidation before the sample is destroyed. After successive repetitions of this process, the graphene nanoribbon becomes more and more narrow and finally breaks to create a
  • EBG electrode. The electrode is a 3 nm wide, zigzag, semi-infinite, graphene nanoribbon terminated by oxygen and connected to a half-ellipse-like structure as shown in Figure 3a. The molecular orbital levels in the Fermi energy, EF = 0 eV, indicate that the orbitals are mostly localized in the edges
PDF
Album
Full Research Paper
Published 26 Jun 2015

Attenuation, dispersion and nonlinearity effects in graphene-based waveguides

  • Almir Wirth Lima Jr.,
  • João Cesar Moura Mota and
  • Antonio Sergio Bezerra Sombra

Beilstein J. Nanotechnol. 2015, 6, 1221–1228, doi:10.3762/bjnano.6.125

Graphical Abstract
  • 10.3762/bjnano.6.125 Abstract We simulated and analyzed in detail the behavior of ultrashort optical pulses, which are typically used in telecommunications, propagating through graphene-based nanoribbon waveguides. In this work, we showed the changes that occur in the Gaussian and hyperbolic secant input
  • pulses due to the attenuation, high-order dispersive effects and nonlinear effects. We concluded that it is possible to control the shape of the output pulses with the value of the input signal power and the chemical potential of the graphene nanoribbon. We believe that the obtained results will be
  • nanophotonics waveguides, this study was focused on the simulation and analysis of the attenuation, dispersion and nonlinear effects occurring in signals propagating through a graphene-based waveguide. We considered a graphene nanoribbon located between similar dielectric layers, as will be described further
PDF
Album
Full Research Paper
Published 28 May 2015

Enhancing the thermoelectric figure of merit in engineered graphene nanoribbons

  • Hatef Sadeghi,
  • Sara Sangtarash and
  • Colin J. Lambert

Beilstein J. Nanotechnol. 2015, 6, 1176–1182, doi:10.3762/bjnano.6.119

Graphical Abstract
  • characteristics [20]. In addition, equilibrium molecular dynamic simulations showed that hydrogen passivation of the graphene-nanoribbon edges reduces significantly the thermal conductivity [22][23]. Anti-dots in graphene, one can further reduce the phonon thermal conductivity [8]. For example, anti-dots created
  • reducing the phonon contribution to thermal conductance. In what follows, we explore the electrical conductance, thermal conductance, and Seebeck and Peltier coefficients of the range of structures shown in Figure 1. These engineered graphene ribbons include: a zigzag monolayer graphene nanoribbon with
  • hydrogen terminated edges (Figure 1a), a monolayer graphene nanopore with hydrogen terminated edges (Figure 1b), an AA-bilayer graphene nanoribbon (Figure 1c), an engineered bilayer graphene nanopore (Figure 1d), an AA-bilayer graphene with monolayer lead, in which the transport takes place from the top
PDF
Album
Full Research Paper
Published 18 May 2015

Transformation of hydrogen titanate nanoribbons to TiO2 nanoribbons and the influence of the transformation strategies on the photocatalytic performance

  • Melita Rutar,
  • Nejc Rozman,
  • Matej Pregelj,
  • Carla Bittencourt,
  • Romana Cerc Korošec,
  • Andrijana Sever Škapin,
  • Aleš Mrzel,
  • Srečo D. Škapin and
  • Polona Umek

Beilstein J. Nanotechnol. 2015, 6, 831–844, doi:10.3762/bjnano.6.86

Graphical Abstract
  • , SI-1000 Ljubljana, Slovenia 10.3762/bjnano.6.86 Abstract The influence of the reaction conditions during the transformation of hydrogen titanate nanoribbons to TiO2 nanoribbons on the phase composition, the morphology, the appearance of the nanoribbon surfaces and their optical properties was
  • neutral environment at 200 °C. Scanning electron microscopy investigations showed that the hydrothermal processing significantly affected the nanoribbon surfaces, which became rougher, while the transformations based on calcination in either oxidative or reductive atmospheres had no effect on the
  • in air. Keywords: doping; nanoribbon; photocatalytic performance; titanate; titanium dioxide (TiO2); transformation; Introduction Titanium dioxide (TiO2) is a technologically important material due to its remarkable combination of properties, its chemical stability and nontoxicity [1][2]. In
PDF
Album
Supp Info
Full Research Paper
Published 27 Mar 2015

Magnetic properties of self-organized Co dimer nanolines on Si/Ag(110)

  • Lisa Michez,
  • Kai Chen,
  • Fabien Cheynis,
  • Frédéric Leroy,
  • Alain Ranguis,
  • Haik Jamgotchian,
  • Margrit Hanbücken and
  • Laurence Masson

Beilstein J. Nanotechnol. 2015, 6, 777–784, doi:10.3762/bjnano.6.80

Graphical Abstract
  • for a Co coverage of approx. 0.6 monolayers, showing the formation of identical and highly ordered Co dimer nanolines on the Si nanoribbon array grown on Ag(110) after Co deposition at 220 K. I = 90 pA, Vsample = −1 V. (c) High-resolution STM image of a Co dimer nanoline grown at RT on a Si nanoribbon
PDF
Album
Full Research Paper
Published 19 Mar 2015

Graphene quantum interference photodetector

  • Mahbub Alam and
  • Paul L. Voss

Beilstein J. Nanotechnol. 2015, 6, 726–735, doi:10.3762/bjnano.6.74

Graphical Abstract
  • interference (QI) photodetector was simulated in two regimes of operation. The structure consists of a graphene nanoribbon, Mach–Zehnder interferometer (MZI), which exhibits a strongly resonant transmission of electrons of specific energies. In the first regime of operation (that of a linear photodetector
  • nanoribbon; phase coherence; photodetector; quantum interference; resonant tunneling; Introduction Graphene, a single layer of carbon atoms arranged in a honeycomb lattice structure, has attracted much attention from researchers because of its exceptional electronic, mechanical and optical properties such
  • states. In this paper we investigate for the first time the interaction of light in a graphene nanoribbon MZI structure and specifically we study the coupling of light between longitudinal resonant modes for both zigzag and armchair structures. Graphene photodetectors have been studied in detail [2][3
PDF
Album
Full Research Paper
Published 12 Mar 2015
Other Beilstein-Institut Open Science Activities