Search results

Search for "phototherapy" in Full Text gives 8 result(s) in Beilstein Journal of Nanotechnology.

Nanocarrier systems loaded with IR780, iron oxide nanoparticles and chlorambucil for cancer theragnostics

  • Phuong-Thao Dang-Luong,
  • Hong-Phuc Nguyen,
  • Loc Le-Tuan,
  • Xuan-Thang Cao,
  • Vy Tran-Anh and
  • Hieu Vu Quang

Beilstein J. Nanotechnol. 2024, 15, 180–189, doi:10.3762/bjnano.15.17

Graphical Abstract
  • for near-infrared imaging and MRI. IR780 is used as the tracer during operation and also in phototherapy [23][24]. The IO NPs have been used as a contrast agent in MRI for diagnosis. Since MRI is a noninvasive and nonradiation technique, it could be used multiple times to follow therapy stages
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2024

Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems

  • Makoto Komiyama

Beilstein J. Nanotechnol. 2023, 14, 218–232, doi:10.3762/bjnano.14.21

Graphical Abstract
  • nanoarchitectures are highly promising for future applications in medicine, pharmaceutics, and other relevant fields. Keywords: cyclodextrin; drug delivery system (DDS); nanoarchitecture; phototherapy; siRNA; Review 1 Introduction Recently, drug delivery systems (DDSs) have been attracting much interest [1][2][3
PDF
Album
Review
Published 09 Feb 2023

Facile preparation of Au- and BODIPY-grafted lipid nanoparticles for synergized photothermal therapy

  • Yuran Wang,
  • Xudong Li,
  • Haijun Chen and
  • Yu Gao

Beilstein J. Nanotechnol. 2022, 13, 1432–1444, doi:10.3762/bjnano.13.118

Graphical Abstract
  • photothermal temperature, which usually requires high doses or prolonged illumination time. BODIPYs have raised great interest in cancer phototherapy because of unique physiochemical characteristics, excellent photothermal converstion ability, and easy chemical modification. To improve the water solubility of
PDF
Album
Full Research Paper
Published 02 Dec 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • biomedicine. Titania nanomaterials for phototherapeutic applications Phototherapy breakthroughs, including photodynamic therapy (PDT) and photothermal therapy (PTT), have established new frontiers in the therapy of cancer and other chronic diseases. The process of inducing cell death using ROS-producing
  • applications, such as implants, drug delivery systems, phototherapy, antimicrobial agents, and as antidotes to snake venom. TiO2 nanomaterials have admirable potential for bone implants that favor bone cell growth, differentiation, and apatite growth. Furthermore, ROS generation by TiO2 nanoscale systems
PDF
Album
Review
Published 14 Feb 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Use of nanosystems to improve the anticancer effects of curcumin

  • Andrea M. Araya-Sibaja,
  • Norma J. Salazar-López,
  • Krissia Wilhelm Romero,
  • José R. Vega-Baudrit,
  • J. Abraham Domínguez-Avila,
  • Carlos A. Velázquez Contreras,
  • Ramón E. Robles-Zepeda,
  • Mirtha Navarro-Hoyos and
  • Gustavo A. González-Aguilar

Beilstein J. Nanotechnol. 2021, 12, 1047–1062, doi:10.3762/bjnano.12.78

Graphical Abstract
  • anticancer photodynamic therapy [140][141], in which this combined approach induces mitochondria-dependent apoptosis (70% of cell viability inhibition) in a human head and neck cancer cell line (AMC-HN3), as compared to individually using F-CUR (10% inhibition) or phototherapy (50% inhibition). The apoptosis
  • -promoting effect of the phototherapy–CUR combination is the result of increased nuclear fragmentation, nuclear condensation and reactive oxygen species (ROS) generation, loss of mitochondrial membrane potential, increased cytosolic levels of cytochrome C, and regulation of apoptosis-related proteins
  • factors that determine the effectiveness of phototherapy against cancer cells [142]. For example, Rahimi-Moghaddam et al. [140] reported a higher cytotoxic effect of a gold–CUR nanosystem used as photothermal therapy against breast cancer cells when exposed to an 808 nm laser (1.5 W/cm2), as compared to a
PDF
Album
Review
Published 15 Sep 2021

Polydopamine-coated Au nanorods for targeted fluorescent cell imaging and photothermal therapy

  • Boris N. Khlebtsov,
  • Andrey M. Burov,
  • Timofey E. Pylaev and
  • Nikolai G. Khlebtsov

Beilstein J. Nanotechnol. 2019, 10, 794–803, doi:10.3762/bjnano.10.79

Graphical Abstract
  • light-mediated targeted phototherapy using AuNR-PDA-R123-folate and obtained a remarkable cancer cell killing efficiency in vitro in comparison with only weak-efficient nontargeted PEGylated nanoparticles. Our work illustrates that AuNR-PDA could be a promising nanoplatform for multifunctional tumor
  • theranostics in the future. Keywords: Au nanorods; cancer theranostics; fluorescent bioimaging; folate; polydopamine; targeted phototherapy; Introduction Multifunctional imaging and combined multimodal therapy strategies are very promising in cancer theranostics [1][2]. Possible way for such purpose is to
  • that folate-functionalized nanoparticles can selectively accumulate in folate-positive HeLa but not in folate-negative HEK 293. The targeted NIR light-mediated phototherapy by using AuNR-PDA-folate showed remarkable cancer cell killing efficiency in vitro in comparison with AuNR-PEG nanoparticles. The
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Modulation of defect-mediated energy transfer from ZnO nanoparticles for the photocatalytic degradation of bilirubin

  • Tanujjal Bora,
  • Karthik K. Lakshman,
  • Soumik Sarkar,
  • Abhinandan Makhal,
  • Samim Sardar,
  • Samir K. Pal and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2013, 4, 714–725, doi:10.3762/bjnano.4.81

Graphical Abstract
  • ; Förster resonance energy transfer (FRET); neonatal jaundice; oxygen vacancy; photocatalysis; phototherapy; zinc oxide nanoparticles; Introduction Bilirubin (BR) is a yellow-orange pigment which is a byproduct of the normal heme catabolism in mammals. In the human body, 250–400 mg BR is produced every day
  • deficiency of important enzymes in the body [4]. At present, phototherapy, the treatment of various diseases with light irradiation, is the most widely used treatment for neonatal jaundice. In it, the unconjugated (Z,Z)-BR isomers are converted to water-soluble (Z,E)-BR isomers by using a light source
  • explored the potential use of ZnO nanoparticles as a phototherapy agent to efficiently degrade BR molecules by controlling the surface defect-states of the nanoparticles through annealing in an oxygen-rich atmosphere. In one of our recent studies, it was demonstrated that upon surface adsorption of BR
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2013
Other Beilstein-Institut Open Science Activities