Search results

Search for "photovoltaics" in Full Text gives 101 result(s) in Beilstein Journal of Nanotechnology.

CdSe/ZnS quantum dots as a booster in the active layer of distributed ternary organic photovoltaics

  • Gabriela Lewińska,
  • Piotr Jeleń,
  • Zofia Kucia,
  • Maciej Sitarz,
  • Łukasz Walczak,
  • Bartłomiej Szafraniak,
  • Jerzy Sanetra and
  • Konstanty W. Marszalek

Beilstein J. Nanotechnol. 2024, 15, 144–156, doi:10.3762/bjnano.15.14

Graphical Abstract
  • architectures, that is, with and without an additional layer. The architecture with the higher efficiency proved to be the one without the PEDOT:PSS layer. Results demonstrated that quantum dots are emerging materials for photovoltaics and are an essential component of research to develop organic solar cells
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2024

Role of titanium and organic precursors in molecular layer deposition of “titanicone” hybrid materials

  • Arbresha Muriqi and
  • Michael Nolan

Beilstein J. Nanotechnol. 2022, 13, 1240–1255, doi:10.3762/bjnano.13.103

Graphical Abstract
  • inorganic films used extensively in photovoltaics, (nano)electronics, energy storage and catalysis [5][6][7][8]. Similarly to ALD, MLD is based on sequential self-limiting reactions of readily vaporized inorganic precursors but the second reactant is a highly volatile organic species. Thus, in contrast to
PDF
Album
Supp Info
Full Research Paper
Published 02 Nov 2022

Open-loop amplitude-modulation Kelvin probe force microscopy operated in single-pass PeakForce tapping mode

  • Gheorghe Stan and
  • Pradeep Namboodiri

Beilstein J. Nanotechnol. 2021, 12, 1115–1126, doi:10.3762/bjnano.12.83

Graphical Abstract
  • structures including metals [1], semiconductors [2][3][4], dielectrics [5][6][7], photovoltaics [8][9][10], polymers [11][12][13], ferroelectrics [14][15][16], and biological samples [17][18][19]. Technical descriptions and applications of KPFM methods for nanoscale material property characterizations are
PDF
Album
Full Research Paper
Published 06 Oct 2021

Revealing the formation mechanism and band gap tuning of Sb2S3 nanoparticles

  • Maximilian Joschko,
  • Franck Yvan Fotue Wafo,
  • Christina Malsi,
  • Danilo Kisić,
  • Ivana Validžić and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 1021–1033, doi:10.3762/bjnano.12.76

Graphical Abstract
  • are several requirements for materials to be eligible for application in the field of photovoltaics, such as high absorption performance, nontoxicity, abundance, efficiency, and low cost. As a semiconductor with a low band gap and a high absorption coefficient, antimony(III) sulfide (Sb2S3) has become
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2021

9.1% efficient zinc oxide/silicon solar cells on a 50 μm thick Si absorber

  • Rafal Pietruszka,
  • Bartlomiej S. Witkowski,
  • Monika Ozga,
  • Katarzyna Gwozdz,
  • Ewa Placzek-Popko and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2021, 12, 766–774, doi:10.3762/bjnano.12.60

Graphical Abstract
  • % for planar structures, respectively. The work, therefore, describes an environmentally friendly technology for PV architecture with surface textures increasing the efficiency of PV cells. Keywords: atomic layer deposition; hydrothermal method; photovoltaics; silicon; solar cell; zinc oxide
  • opens the way to the installation of “green” (i.e., environmentally friendly) sources of energy. Moreover, such sources are now economically justified, which is due to impressive reduction of their costs. Currently, the most important sources of green energy are photovoltaics (PV), wind generators, and
  • hydropower installations. Of these energy sources, the photovoltaics market is developing extremely dynamically. The growing interest in photovoltaics results not only in large installations (large solar farms), but also in small solarpower systems installed on residential buildings. According to a report
PDF
Album
Full Research Paper
Published 21 Jul 2021

Nanoporous and nonporous conjugated donor–acceptor polymer semiconductors for photocatalytic hydrogen production

  • Zhao-Qi Sheng,
  • Yu-Qin Xing,
  • Yan Chen,
  • Guang Zhang,
  • Shi-Yong Liu and
  • Long Chen

Beilstein J. Nanotechnol. 2021, 12, 607–623, doi:10.3762/bjnano.12.50

Graphical Abstract
  • (Figure 1) by selectively tuning the donor and acceptor parts within the conjugated backbones [39][40]. The D–A architecture has been widely employed in high-performance organic optoelectronic devices, such as organic photovoltaics, organic field-effect transistors, nonlinear optics, and organic light
PDF
Album
Review
Published 30 Jun 2021

Impact of GaAs(100) surface preparation on EQE of AZO/Al2O3/p-GaAs photovoltaic structures

  • Piotr Caban,
  • Rafał Pietruszka,
  • Jarosław Kaszewski,
  • Monika Ożga,
  • Bartłomiej S. Witkowski,
  • Krzysztof Kopalko,
  • Piotr Kuźmiuk,
  • Katarzyna Gwóźdź,
  • Ewa Płaczek-Popko,
  • Krystyna Lawniczak-Jablonska and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2021, 12, 578–592, doi:10.3762/bjnano.12.48

Graphical Abstract
  • ; gallium arsenide; photovoltaics; surface passivation; Introduction The atomic layer deposition (ALD) method is used for silicon passivation in photovoltaics. In recent years we proposed the usage of ALD for the construction of simplified Si-based cells [1]. Once zinc oxide (ZnO) nanorods were employed as
PDF
Album
Full Research Paper
Published 28 Jun 2021

Influence of electrospray deposition on C60 molecular assemblies

  • Antoine Hinaut,
  • Sebastian Scherb,
  • Sara Freund,
  • Zhao Liu,
  • Thilo Glatzel and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2021, 12, 552–558, doi:10.3762/bjnano.12.45

Graphical Abstract
  • fragile molecules that are impossible to safely deposit onto surfaces with traditional deposition techniques. So far, using HV-ESD, numerous molecular species with potential applications in biology and photovoltaics, or with magnetic or thermal expansion properties have been deposited on a variety of
  • used as model surface in nc-AFM measurements [31][32][33][34], and, finally, NiO(001), a p-type wide-bandgap metal oxide with potential applications in photovoltaics [35][36][37]. For all cases, we show the typical C60 structures formed by TE and compare these with the results from HV-ESD. This allows
  • photovoltaics [47]. To date, only few SPM studies have focused on the adsorption of organic molecules on NiO surfaces [35][36][37]. Because organic dyes are large and complex molecules, their TE is impossible, making HV-ESD methods the only deposition technique compatible with fundamental studies. A first step
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2021

Extended iron phthalocyanine islands self-assembled on a Ge(001):H surface

  • Rafal Zuzak,
  • Marek Szymonski and
  • Szymon Godlewski

Beilstein J. Nanotechnol. 2021, 12, 232–241, doi:10.3762/bjnano.12.19

Graphical Abstract
  • achieve control over the growth of molecular columns of CuPc molecules [40]. Metal phthalocyanines exhibit useful physical, chemical, and electronic properties. They are considered as promising candidates for practical applications in (opto)electronics and photovoltaics, for instance, in solar cells or
  • context of a future application in photovoltaics [58][59]. A few of the phthalocyanines with different central metal atoms exhibit magnetic properties [60] and thus attract growing attention. Having this in mind, we have sublimed FePc molecules on a Ge(001):H surface and studied the formation of molecular
PDF
Supp Info
Full Research Paper
Published 05 Mar 2021

ZnO and MXenes as electrode materials for supercapacitor devices

  • Ameen Uddin Ammar,
  • Ipek Deniz Yildirim,
  • Feray Bakan and
  • Emre Erdem

Beilstein J. Nanotechnol. 2021, 12, 49–57, doi:10.3762/bjnano.12.4

Graphical Abstract
  • , photovoltaics, and energy storage. In this context, supercapacitors are a major application of ZnO as electrode material. This contribution summarizes the results using all possible microscopic characterization techniques to detect ZnO defect structures, their role, and the effect of their concentration. The
PDF
Album
Review
Published 13 Jan 2021

Seebeck coefficient of silicon nanowire forests doped by thermal diffusion

  • Shaimaa Elyamny,
  • Elisabetta Dimaggio and
  • Giovanni Pennelli

Beilstein J. Nanotechnol. 2020, 11, 1707–1713, doi:10.3762/bjnano.11.153

Graphical Abstract
  • fabricate large numbers of nanowires with high aspect ratio, perpendicular to a silicon substrate, that is, so-called silicon nanowire (SiNW) forests. The process is very suitable for the large-scale fabrication of nanostructured devices useful for several applications, such as sensing, photovoltaics
PDF
Album
Full Research Paper
Published 11 Nov 2020

Revealing the local crystallinity of single silicon core–shell nanowires using tip-enhanced Raman spectroscopy

  • Marius van den Berg,
  • Ardeshir Moeinian,
  • Arne Kobald,
  • Yu-Ting Chen,
  • Anke Horneber,
  • Steffen Strehle,
  • Alfred J. Meixner and
  • Dai Zhang

Beilstein J. Nanotechnol. 2020, 11, 1147–1156, doi:10.3762/bjnano.11.99

Graphical Abstract
  • standing topics of various investigations because silicon is still the most widely used semiconductor material for a broad range of micro- and nano-electromechanical systems, microelectronics, and photovoltaics [1][2]. Silicon nanostructures, such as bottom-up-grown nanowires [3], were also synthesized
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2020

Templating effect of single-layer graphene supported by an insulating substrate on the molecular orientation of lead phthalocyanine

  • K. Priya Madhuri,
  • Abhay A. Sagade,
  • Pralay K. Santra and
  • Neena S. John

Beilstein J. Nanotechnol. 2020, 11, 814–820, doi:10.3762/bjnano.11.66

Graphical Abstract
  • , among others, organic light-emitting diodes and organic photovoltaics. In particular, metal phthalocyanines (MPcs) have gained considerable interest as they offer flexibility in the modification of their optoelectronic properties through their molecular packing, which in turn is governed by substrate
  • –molecule interactions [1][2][3][4]. Nonplanar MPcs, such as lead phthalocyanine (PbPc), are particularly interesting in the field of photovoltaics due to their extraordinary near-infrared (NIR) absorption. The chemical structure of a PbPc molecule is given in Figure 1. The well-known polymorphs of
PDF
Album
Full Research Paper
Published 19 May 2020

Interfacial charge transfer processes in 2D and 3D semiconducting hybrid perovskites: azobenzene as photoswitchable ligand

  • Nicole Fillafer,
  • Tobias Seewald,
  • Lukas Schmidt-Mende and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2020, 11, 466–479, doi:10.3762/bjnano.11.38

Graphical Abstract
  • ; organic–inorganic hybrid materials; particle synthesis; semiconductors; transport across interfaces; Introduction Recently the class of hybrid perovskites attracted great attention in materials chemistry and physics [1][2][3]. In addition to an outstanding performance in photovoltaics, a peculiar feature
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2020

Current measurements in the intermittent-contact mode of atomic force microscopy using the Fourier method: a feasibility analysis

  • Berkin Uluutku and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2020, 11, 453–465, doi:10.3762/bjnano.11.37

Graphical Abstract
  • characterization of such materials may lead to additional challenges, where for some frequencies the carriers may not be able to respond fast enough to the intermittent interaction. Examples of such materials, which are often characterized with C-AFM, are those used in photovoltaics, which have very particular
PDF
Album
Full Research Paper
Published 13 Mar 2020

Implementation of data-cube pump–probe KPFM on organic solar cells

  • Benjamin Grévin,
  • Olivier Bardagot and
  • Renaud Demadrille

Beilstein J. Nanotechnol. 2020, 11, 323–337, doi:10.3762/bjnano.11.24

Graphical Abstract
  • ); organic photovoltaics; photocarrier dynamics; pump–probe configuration; time-resolved measurements; Introduction Many emerging photovoltaic technologies rely on the use of thin film materials displaying structural and/or chemical heterogeneities at the μm or nm scale. This is the case for solution
  • precise understanding of the relationship of the structural, chemical and optoelectronic properties of the device. Especially, a universal problem in third-generation photovoltaics consists in identifying the sources of carrier loss by the recombination of photogenerated charge carriers. This has prompted
  • less data points to probe the parts of the time-domain where the SP evolves more slowly. Organic BHJ Solar Cells In this work, PTB7:PC71BM BHJ photovoltaic thin films have been used as test samples (Figure 3) for pp-KPFM experiments. In the following, a few concepts of organic photovoltaics are
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2020

Fabrication of Ag-modified hollow titania spheres via controlled silver diffusion in Ag–TiO2 core–shell nanostructures

  • Bartosz Bartosewicz,
  • Malwina Liszewska,
  • Bogusław Budner,
  • Marta Michalska-Domańska,
  • Krzysztof Kopczyński and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2020, 11, 141–146, doi:10.3762/bjnano.11.12

Graphical Abstract
  • range than the Ag–TiO2 CSNs they are made from. In addition, a significant number of AgNPs can be observed on their surface and, therefore, based on the existing literature, these nanostructures should be of great interest for applications in solar light-driven photocatalysis and photovoltaics [30
PDF
Album
Supp Info
Letter
Published 10 Jan 2020

Recent progress in perovskite solar cells: the perovskite layer

  • Xianfeng Dai,
  • Ke Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2020, 11, 51–60, doi:10.3762/bjnano.11.5

Graphical Abstract
  • manufacturing large-scale perovskite solar modules at high speed. Moreover, it is shown that the development of low-dimensional perovskites plays an important role in improving the long-term ambient stability of PSCs. Finally, these latest advancements can enhance the competitiveness of PSCs in photovoltaics
  • been developed into solar cells, photodetectors and light-emitting diodes (Figure 1). In OIHP photovoltaics, perovskite solar cells (PSCs) have entered our field of vision. With their high efficiency and low cost, they are expected to be highly influential in next-generation photovoltaic technology. In
  • development of large-scale semi-transparent PSCs with large area, having diverse applications in the field of building-integrated photovoltaics (BIPVs) or as top cells for tandem devices. It has become a problem that a considerable amount of toxic Pb-containing material is discarded during the spin coating
PDF
Album
Review
Published 06 Jan 2020

Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Lothar Weinhardt,
  • Monika Blum,
  • Clemens Heske,
  • Wanli Yang,
  • Ilona Oja Acik and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 2396–2409, doi:10.3762/bjnano.10.230

Graphical Abstract
  • . Keywords: antimony sulfide; semitransparent solar cells; solar windows; thin films; ultrasonic spray pyrolysis; Introduction Modern buildings, especially high-rise buildings, have a large window area available for building-integrated photovoltaics (BIPV). Covering the windows with semitransparent thin
  • Newport Cornerstone 260), a digital lock-in detector (Merlin) and a factory-calibrated Si reference detector. The integrated short-circuit current density (JSC) from EQE was calculated in AM1.5G conditions with the online tool Open Photovoltaics Analysis Platform and compared with the JSC obtained from
  • -chemical methods for next-generation photovoltaics” and European Regional Development Fund project TK141 (TAR16016EK) “Advanced materials and high-technology devices for energy recuperation systems”. This research used resources of the Advanced Light Source, which is a DOE Office of Science User Facility
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2019

Polyvinylpyrrolidone as additive for perovskite solar cells with water and isopropanol as solvents

  • Chen Du,
  • Shuo Wang,
  • Xu Miao,
  • Wenhai Sun,
  • Yu Zhu,
  • Chengyan Wang and
  • Ruixin Ma

Beilstein J. Nanotechnol. 2019, 10, 2374–2382, doi:10.3762/bjnano.10.228

Graphical Abstract
  • remarkable light absorption capacity [5] and the tunable band gap [6] of inorganic–organic lead halide perovskite crystals make them suitable for the production of organic semiconductors [7], photodetectors [8], and photovoltaics [5]. In 2009, Kojima et al. achieved a breakthrough in using mesoporous TiO2 as
PDF
Album
Full Research Paper
Published 05 Dec 2019

Nanostructured and oriented metal–organic framework films enabling extreme surface wetting properties

  • Andre Mähringer,
  • Julian M. Rotter and
  • Dana D. Medina

Beilstein J. Nanotechnol. 2019, 10, 1994–2003, doi:10.3762/bjnano.10.196

Graphical Abstract
  • ][41][42][43][44][45]. Thereby, they are attractive synthesis targets for a large variety of applications, including gas storage and separation, chemical sensing, thermoelectrics, capacitors, transistors or photovoltaics [46][47][48][49][50][51][52]. Due to their exceptional variety of structural
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2019

Charge-transfer interactions between fullerenes and a mesoporous tetrathiafulvalene-based metal–organic framework

  • Manuel Souto,
  • Joaquín Calbo,
  • Samuel Mañas-Valero,
  • Aron Walsh and
  • Guillermo Mínguez Espallargas

Beilstein J. Nanotechnol. 2019, 10, 1883–1893, doi:10.3762/bjnano.10.183

Graphical Abstract
  • , understanding the CT processes between the electron-acceptor C60 and the electron-donor molecules is fundamental in order to optimise photovoltaics and develop efficient solar cells [28]. The encapsulation of C60 in MOFs [29] has become a very interesting strategy for the purification of fullerenes [30][31][32
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2019

Tuning the performance of vanadium redox flow batteries by modifying the structural defects of the carbon felt electrode

  • Ditty Dixon,
  • Deepu Joseph Babu,
  • Aiswarya Bhaskar,
  • Hans-Michael Bruns,
  • Joerg J. Schneider,
  • Frieder Scheiba and
  • Helmut Ehrenberg

Beilstein J. Nanotechnol. 2019, 10, 1698–1706, doi:10.3762/bjnano.10.165

Graphical Abstract
  • battery (VRFB); Introduction In every part of the world, the contribution of electrical energy harvested from a renewable source, such as wind, photovoltaics, etc., to the electrical grid system is increasing. In contrast to electric energy production from fossil or nuclear fuels, the generation of
PDF
Album
Full Research Paper
Published 13 Aug 2019

Fabrication of silver nanoisland films by pulsed laser deposition for surface-enhanced Raman spectroscopy

  • Bogusław Budner,
  • Mariusz Kuźma,
  • Barbara Nasiłowska,
  • Bartosz Bartosewicz,
  • Malwina Liszewska and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2019, 10, 882–893, doi:10.3762/bjnano.10.89

Graphical Abstract
  • ][8][9], photovoltaics [10] or optical sensing through localized surface plasmon resonance (LSPR) [11]. It is therefore not surprising that quite a number of studies have been initiated and performed in order to design and fabricate highly active SERS substrates based on metallic nanoparticles and
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2019

Renewable energy conversion using nano- and microstructured materials

  • Harry Mönig and
  • Martina Schmid

Beilstein J. Nanotechnol. 2019, 10, 771–773, doi:10.3762/bjnano.10.76

Graphical Abstract
  • benefits arising from core–shell nanowire arrays for Si heterojunction solar cells. Contacts with a high surface-to-volume ratio can clearly be seen. Particularly in photovoltaics, they may be prone to increased recombination losses. For other applications, such as water splitting, porous materials may
PDF
Editorial
Published 26 Mar 2019
Other Beilstein-Institut Open Science Activities