Search results

Search for "poly(methyl methacrylate)" in Full Text gives 84 result(s) in Beilstein Journal of Nanotechnology.

Functionalization of vertically aligned carbon nanotubes

  • Eloise Van Hooijdonk,
  • Carla Bittencourt,
  • Rony Snyders and
  • Jean-François Colomer

Beilstein J. Nanotechnol. 2013, 4, 129–152, doi:10.3762/bjnano.4.14

Graphical Abstract
  • also mention the work of Raravikar et al. [142] who embedded VA-CNTs into a poly(methyl methacrylate) (PMMA) matrix with a two-step strategy. The first step is the fabrication of a VA-CNTs array followed by a MMA monomer infiltration while the subsequent step is in situ polymerization. Finally, we
PDF
Album
Review
Published 22 Feb 2013

Polymer blend lithography: A versatile method to fabricate nanopatterned self-assembled monolayers

  • Cheng Huang,
  • Markus Moosmann,
  • Jiehong Jin,
  • Tobias Heiler,
  • Stefan Walheim and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2012, 3, 620–628, doi:10.3762/bjnano.3.71

Graphical Abstract
  • and conditions, including the ambient atmosphere (humidity), the molar mass of the polystyrene (PS) and poly(methyl methacrylate) (PMMA), and the mass ratio between the two polymers in the blend solution, the formation of a purely lateral morphology (PS islands standing on the substrate while isolated
  • by AFM. Together with the chemical variability, polymer-blend lithography (PBL) can become an important tool for studying surface-initiated processes. Experimental Polymer solution: Poly(methyl methacrylate) (PMMA, Mw = 9.59 kg/mol, PDI = 1.05) and polystyrene (PS, Mw = 96 kg/mol, PDI = 1.04) were
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2012

Surface functionalization of aluminosilicate nanotubes with organic molecules

  • Wei Ma,
  • Weng On Yah,
  • Hideyuki Otsuka and
  • Atsushi Takahara

Beilstein J. Nanotechnol. 2012, 3, 82–100, doi:10.3762/bjnano.3.10

Graphical Abstract
  • to 93°. This result indicates that the hydrophilicity of the external surface of imogolite is changed upon absorption of DDPO4, which converts the hydrophilic surface of imogolite nanotubes to a hydrophobic one. Poly(methyl methacrylate) grafted imogolite nanotubes The above content demonstrated the
  • to free-radical polymerization [39]. Free-radical polymerization is preferable to ionic processes on economic grounds, because it is easier to perform and much less sensitive to the presence of water. Recently, we reported the grafting of poly(methyl methacrylate) (PMMA) on the imogolite surface, in
  • (methyl methacrylate) (PMMA) grafted imogolite nanotubes are prepared through a surface-initiated polymerization. PMMA grafted imogolite nanotubes can be homogenously dispersed in various organic solvents. A water-soluble surface-attachable ATRP initiator, BMPOPO4(NH4)2, contributes to the successful
PDF
Album
Review
Published 02 Feb 2012

Mechanical characterization of carbon nanomembranes from self-assembled monolayers

  • Xianghui Zhang,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2011, 2, 826–833, doi:10.3762/bjnano.2.92

Graphical Abstract
  • membranes on a window-structured silicon substrate (Silson Ltd., UK) in hydrofluoric acid (HF, ~48%). For BPT and NBPT CNMs, the samples were spin-coated with a layer of poly(methyl methacrylate) (PMMA) for stabilization and baked on a hotplate. The sample was immersed into HF (~48%) for 20 min to weaken
PDF
Album
Video
Full Research Paper
Published 20 Dec 2011

Investigation on structural, thermal, optical and sensing properties of meta-stable hexagonal MoO3 nanocrystals of one dimensional structure

  • Angamuthuraj Chithambararaj and
  • Arumugam Chandra Bose

Beilstein J. Nanotechnol. 2011, 2, 585–592, doi:10.3762/bjnano.2.62

Graphical Abstract
  • range from 200 to 2000 nm) and a miniature fiber optics spectrometer (EPP-2000, StellarNet Inc, USA) having a spectral range of 100 to 1100 nm. Poly methyl methacrylate (PMMA) based multimode plastic step index fiber (length 100 cm, diameter 700 µm and numerical aperture 0.51) with cleaved ends was used
PDF
Album
Full Research Paper
Published 14 Sep 2011

Infrared receptors in pyrophilous (“fire loving”) insects as model for new un-cooled infrared sensors

  • David Klocke,
  • Anke Schmitz,
  • Helmut Soltner,
  • Herbert Bousack and
  • Helmut Schmitz

Beilstein J. Nanotechnol. 2011, 2, 186–197, doi:10.3762/bjnano.2.22

Graphical Abstract
  • ). Indentation tests were performed by using a three-sided Berkovich diamond tip with a total included angle of 142.3°. A proper area function was established by indenting in a poly(methyl methacrylate) (PMMA) test specimen with known hardness and modulus. Contact depths range from 250 to 1100 nm. The maximum
PDF
Album
Full Research Paper
Published 30 Mar 2011

Single-pass Kelvin force microscopy and dC/dZ measurements in the intermittent contact: applications to polymer materials

  • Sergei Magonov and
  • John Alexander

Beilstein J. Nanotechnol. 2011, 2, 15–27, doi:10.3762/bjnano.2.2

Graphical Abstract
  • , and a shiny surface of the alloy sheet was examined by AFM. Polymer films were prepared by the spin-casting of a droplet of a dilute solution of the polymer on the substrates. Thin films of poly(methyl methacrylate) (PMMA) and polymer blends PMMA with polystyrene (PS) and PS with poly(vinyl acetate
PDF
Album
Full Research Paper
Published 06 Jan 2011

Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites

  • Jana Bomm,
  • Andreas Büchtemann,
  • Angela Fiore,
  • Liberato Manna,
  • James H. Nelson,
  • Diana Hill and
  • Wilfried G. J. H. M. van Sark

Beilstein J. Nanotechnol. 2010, 1, 94–100, doi:10.3762/bjnano.1.11

Graphical Abstract
  • in poly(lauryl methacrylate) (PLMA) [6][8], while Woelfle and Claus dispersed CdSe/ZnS QDs in an ionic liquid that was compatible with poly(methyl methacrylate) (PMMA) [6]. However, in both these cases chemical attack of QDs by initiator radicals produced from azobisisobutyronitrile (AIBN) during the
PDF
Album
Full Research Paper
Published 29 Nov 2010

Sensing surface PEGylation with microcantilevers

  • Natalija Backmann,
  • Natascha Kappeler,
  • Thomas Braun,
  • François Huber,
  • Hans-Peter Lang,
  • Christoph Gerber and
  • Roderick Y. H. Lim

Beilstein J. Nanotechnol. 2010, 1, 3–13, doi:10.3762/bjnano.1.2

Graphical Abstract
  • ][26], DNA [27] or lipid bilayers [28]. Recently, Bumbu et al. [29] applied the static mode technique to study the behavior of poly(methyl methacrylate) brushes that had been polymerized from the silicon surface of a microcantilever sensor, i.e., using a “grafting from” approach. While this allowed the
  • authors to study the in situ swelling and collapse of poly(methyl methacrylate) brushes, the kinetics of brush formation could not be monitored in real-time. The driving impetus behind this work is to apply microcantilever sensors operated in static mode to study in real-time (1) the kinetic aspects of
  • surface blocked with a self-assembled EG4–C11–SH monolayer. The resulting bending is similar to Bumbu et al. [29], who showed that the de-swelling of dense poly(methyl methacrylate) brushes “grafted from” a silicon microcantilever generated tensile surface stress. Our results demonstrate that
PDF
Album
Video
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities