Search results

Search for "qPlus" in Full Text gives 39 result(s) in Beilstein Journal of Nanotechnology.

Optimal geometry for a quartz multipurpose SPM sensor

  • Julian Stirling

Beilstein J. Nanotechnol. 2013, 4, 370–376, doi:10.3762/bjnano.4.43

Graphical Abstract
  • ] respectively, into a wide range of specialised sensors. The most common NC-AFM sensors: silicon microcantilvers [5], and quartz sensors such as the qPlus sensor (tuning fork) [6] or KolibriSensor® [7], have all been used for combined AFM/STM [7][8][9]. Combined AFM/LFM sensors have been constructed from
  • silicon cantilevers, by exciting torsional modes to generate the lateral motion needed for the LFM [10]. The qPlus sensor has been used as an LFM by rotating the tip on the end of the quartz tuning fork [11], but no combined AFM/LFM qPlus system has been developed due to the magnitude of the torsion
  • . For quartz sensors the obvious choice of cantilever is the standard qPlus sensor with a normal spring constant of approximately 1.8 kN·m−1. [17][18] For commercially available silicon cantilevers the spring constants are usually less than 50 N·m−1, with resonant frequencies of 200–300 kHz. The
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2013

High-resolution dynamic atomic force microscopy in liquids with different feedback architectures

  • John Melcher,
  • David Martínez-Martín,
  • Miriam Jaafar,
  • Julio Gómez-Herrero and
  • Arvind Raman

Beilstein J. Nanotechnol. 2013, 4, 153–163, doi:10.3762/bjnano.4.15

Graphical Abstract
  • possibility that force resolution is not necessarily the limiting factor for imaging resolution. The highest resolution images are achieved with the qPlus sensor in [47], which has the lowest force resolution amongst the references in vacuum. If the force sensitivity meets some minimal requirements, the
  • typically low, the force sensitivity can be preserved by using soft probes with small amplitudes. Remarkably, it is possible for a probe in liquid to have a force sensitivity on par with the qPlus sensor in vacuum. Moreover, we find that the reduction in both attractive forces and quality factors that
PDF
Album
Full Research Paper
Published 27 Feb 2013

Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy

  • Jannis Lübbe,
  • Matthias Temmen,
  • Sebastian Rode,
  • Philipp Rahe,
  • Angelika Kühnle and
  • Michael Reichling

Beilstein J. Nanotechnol. 2013, 4, 32–44, doi:10.3762/bjnano.4.4

Graphical Abstract
  • bandwidth larger than the thermal-limit bandwidth. Note that the thermal-noise contribution of AL 3 is even larger than the total noise of the other cantilevers. These results are compared to typical values for a qPlus sensor with parameters taken from [11]. The thermal noise δfth of the qPlus sensor is an
  • order of magnitude below the values for the cantilevers. Including the noise of the detection system, δftot of the qPlus sensor is nearly identical to the thermal noise δfth obtained for cantilever D 5 (curve not shown) and, therefore, only half of the noise level of the best cantilevers. For a valid
  • δγtot is quite close to that of cantilever D 5. On the other hand, the qPlus sensor has a noise level δγ more than two orders above the results for the cantilevers due to its exceptional k/f0 ratio. Therefore, the advantageous noise figures of the qPlus sensor documented in Figure 8a can only be
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2013

Calculation of the effect of tip geometry on noncontact atomic force microscopy using a qPlus sensor

  • Julian Stirling and
  • Gordon A. Shaw

Beilstein J. Nanotechnol. 2013, 4, 10–19, doi:10.3762/bjnano.4.2

Graphical Abstract
  • qPlus atomic force microscopy the tip length can in principle approach the length of the cantilever. We present a detailed mathematical model of the effects this has on the dynamic properties of the qPlus sensor. The resulting, experimentally confirmed motion of the tip apex is shown to have a large
  • lateral component, raising interesting questions for both calibration and force-spectroscopy measurements. Keywords: atomic force microscopy; force spectroscopy; lateral forces; mechanical vibrations; qPlus; Introduction From imaging of individual chemical bonds [1] to subatomic resolution of the
  • structure of the tip apex [2], many experiments have demonstrated the ability of qPlus atomic force microscopy (AFM) to produce unprecedented imaging resolution. Other qPlus studies have measured both the forces necessary to perform atomically precise manipulation [3][4][5], and the strength of both atomic
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2013

Characterization of the mechanical properties of qPlus sensors

  • Jan Berger,
  • Martin Švec,
  • Martin Müller,
  • Martin Ledinský,
  • Antonín Fejfar,
  • Pavel Jelínek and
  • Zsolt Majzik

Beilstein J. Nanotechnol. 2013, 4, 1–9, doi:10.3762/bjnano.4.1

Graphical Abstract
  • methods that can be used for estimating the stiffness of qPlus sensors. The first method is based on continuum theory of elasticity. The second (Cleveland’s method) uses the change in the eigenfrequency that is induced by the loading of small masses. Finally, the stiffness is obtained by analysis of the
  • . This method is based on gluing small pieces of a tungsten wire; the mass is obtained from the volume of the wire, which is measured by optical microscopy. To facilitate detection of oscillation eigenfrequencies under ambient conditions, we designed and built a device for testing qPlus sensors
  • . Keywords: AFM; Cleveland’s method; cross talk; force; qPlus; stiffness; STM; thermal noise; tuning fork; Introduction The invention of scanning tunneling microscopy [1] and atomic force microscopy (AFM) [2] opened new horizons in characterization and modification of surfaces and nanostructures. STM is
PDF
Album
Full Research Paper
Published 02 Jan 2013

Pure hydrogen low-temperature plasma exposure of HOPG and graphene: Graphane formation?

  • Baran Eren,
  • Dorothée Hug,
  • Laurent Marot,
  • Rémy Pawlak,
  • Marcin Kisiel,
  • Roland Steiner,
  • Dominik M. Zumbühl and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2012, 3, 852–859, doi:10.3762/bjnano.3.96

Graphical Abstract
  • 83.78 eV, hence all our XPS peaks are shifted by −0.22 eV. Wide-scan XPS spectra from 0 to 1200 eV showed only carbon, which precludes a possible interpretation of the results as a reaction with an unknown element. STM was performed with a commercial qPlus STM/AFM microscope (Omicron Nanotechnology GmbH
PDF
Album
Full Research Paper
Published 13 Dec 2012

Spring constant of a tuning-fork sensor for dynamic force microscopy

  • Dennis van Vörden,
  • Manfred Lange,
  • Merlin Schmuck,
  • Nico Schmidt and
  • Rolf Möller

Beilstein J. Nanotechnol. 2012, 3, 809–816, doi:10.3762/bjnano.3.90

Graphical Abstract
  • tuning fork in qPlus configuration. The simple calculation for a rectangular cantilever is compared to the values obtained by the analysis of the thermal excitation and by the direct mechanical measurement of the force versus displacement. To elucidate the difference, numerical simulations were performed
  • we compare the results for the determination of the spring constant of tuning fork sensors in the qPlus configuration [1][2] based on the following methods: a simple calculation for a cantilever beam; the measured deflection as a function of the applied force; the thermal noise; and a numerical
  • our experiments, E = 78.7 GPa, t = 0.41 ± 0.003 mm, w = 0.24 ± 0.003 mm, and L = 2.94 ± 0.003 mm, yielding a value of Experimental evaluation of the spring constant Beam deflection as function of applied force To a good approximation, the force F exerted by the tuning fork (TF) in the qPlus
PDF
Album
Full Research Paper
Published 29 Nov 2012

Models of the interaction of metal tips with insulating surfaces

  • Thomas Trevethan,
  • Matthew Watkins and
  • Alexander L. Shluger

Beilstein J. Nanotechnol. 2012, 3, 329–335, doi:10.3762/bjnano.3.37

Graphical Abstract
  • fact, in many cases atomic-resolution images are only obtained after the tip has been deliberately crashed into the surface, implying that the tip apex is formed from surface species [1][2]. The development of NC-AFM based on a quartz tuning fork (qPlus sensor) instead of a silicon cantilever has led
PDF
Album
Full Research Paper
Published 13 Apr 2012

Graphite, graphene on SiC, and graphene nanoribbons: Calculated images with a numerical FM-AFM

  • Fabien Castanié,
  • Laurent Nony,
  • Sébastien Gauthier and
  • Xavier Bouju

Beilstein J. Nanotechnol. 2012, 3, 301–311, doi:10.3762/bjnano.3.34

Graphical Abstract
  • -AFM users equipped, for example, with a qPlus sensor. Nevertheless, calculations are necessary to fully interpret experimental images in some specific cases. In this context, we developed a numerical AFM (n-AFM) able to be used in different modes and under different usage conditions. Results: Here, we
  • functionalized tip, that is, with a CO molecule attached to the tip apex acting as a supertip [60]. Most of the mentioned studies were based on a technical improvement consisting of the use of a tuning fork of the qPlus sensor type [61]. This sensor is an AFM tip that is fixed to one branch of a quartz tuning
  • amplitude constant and equal to a predefined setpoint. Large-amplitude (typically 10–20 nm) to small-amplitude (of the order of 0.02 nm to mimic a qPlus sensor [62]) settings are available with the n-AFM. The DC allows the regulation of the tip–sample distance based on minimizing the difference between Δf
PDF
Album
Full Research Paper
Published 02 Apr 2012

Simultaneous current, force and dissipation measurements on the Si(111) 7×7 surface with an optimized qPlus AFM/STM technique

  • Zsolt Majzik,
  • Martin Setvín,
  • Andreas Bettac,
  • Albrecht Feltz,
  • Vladimír Cháb and
  • Pavel Jelínek

Beilstein J. Nanotechnol. 2012, 3, 249–259, doi:10.3762/bjnano.3.28

Graphical Abstract
  • .3.28 Abstract We present the results of simultaneous scanning-tunneling and frequency-modulated dynamic atomic force microscopy measurements with a qPlus setup. The qPlus sensor is a purely electrical sensor based on a quartz tuning fork. If both the tunneling current and the force signal are to be
  • interferometric deflection. Keywords: AFM; cross-talk; current; dissipation; force; qPlus; STM; tuning fork; Introduction The invention of scanning probe techniques, in particular scanning tunneling microscopy (STM) [1] and atomic force microscopy (AFM) [2], had a tremendous impact on our understanding of the
  • , piezoelectric quartz tuning forks similar to those used as frequency references in watches. The configuration when one of the prongs is attached to a solid substrate and the free prong acts as a cantilever with the capability of self-sensing, is called qPlus, named by Giessibl [12]. One of the largest benefits
PDF
Album
Full Research Paper
Published 15 Mar 2012

Analysis of force-deconvolution methods in frequency-modulation atomic force microscopy

  • Joachim Welker,
  • Esther Illek and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2012, 3, 238–248, doi:10.3762/bjnano.3.27

Graphical Abstract
  • (maximum attractive force). Therefore, we also compare the deviation from the model values: To calculate the frequency shift we chose a tuning fork sensor in the qPlus design [13] with a spring constant of k = 1800 N/m and a resonance frequency of f0 = 32768 Hz. This sensor can operate with very small
PDF
Album
Supp Info
Full Research Paper
Published 14 Mar 2012

A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope

  • Manfred Lange,
  • Dennis van Vörden and
  • Rolf Möller

Beilstein J. Nanotechnol. 2012, 3, 207–212, doi:10.3762/bjnano.3.23

Graphical Abstract
  • 77 K under ultrahigh vacuum (UHV) conditions. Measurements were performed using a home-built LT-TF-AFM [9], which is able to operate both as an STM and as an FM-AFM. The tuning fork is used in the qPlus configuration [22]. The oscillation amplitude of the tuning fork can be chosen in the subnanometer
PDF
Album
Full Research Paper
Published 08 Mar 2012

qPlus magnetic force microscopy in frequency-modulation mode with millihertz resolution

  • Maximilian Schneiderbauer,
  • Daniel Wastl and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2012, 3, 174–178, doi:10.3762/bjnano.3.18

Graphical Abstract
  • gradients of the interactions responsible for atomic contrast and those causing domain contrast are orders of magnitude apart, ranging from up to 100 Nm−1 for atomic interactions down to 0.0001 Nm−1 for magnetic dipole interactions. Here, we show that this gap can be bridged with a qPlus sensor, with a
  • with a single probe. Keywords: hard disc; high-stiffness cantilever; magnetic force microscopy; qPlus; Introduction Ferromagnetism is a collective phenomenon showing a parallel alignment of atomic magnetic dipole moments over macroscopic domains caused by a quantum-mechanical exchange interaction
  • fork. The qPlus sensor [8] is based on a quartz tuning fork, in which one prong is attached to a carrier substrate. The large spring constant of the qPlus, k = 1800 Nm−1, allows one to overcome the snap-to-contact-problem in small-amplitude operation [9]. In this mode, the qPlus setup is customized for
PDF
Album
Letter
Published 29 Feb 2012

Effect of the tip state during qPlus noncontact atomic force microscopy of Si(100) at 5 K: Probing the probe

  • Adam Sweetman,
  • Sam Jarvis,
  • Rosanna Danza and
  • Philip Moriarty

Beilstein J. Nanotechnol. 2012, 3, 25–32, doi:10.3762/bjnano.3.3

Graphical Abstract
  • functionalised tips has provided additional impetus to elucidating the role of the tip apex in the observed contrast. Results: We present an analysis of the influence of the tip apex during imaging of the Si(100) substrate in ultra-high vacuum (UHV) at 5 K using a qPlus sensor for noncontact atomic force
  • ; noncontact AFM; qPlus; Si(001); Si(100); tip (apex) structure; Introduction It is now generally accepted that atomic resolution in NC-AFM imaging on semiconducting surfaces is due to the chemical force between the atoms of the surface and the last few atoms of the tip apex [1][2][3][4]. Even with well
  • imaging and force spectroscopy of the Si(100) surface at 5 K by qPlus [21] NC-AFM at zero applied bias, and investigate the influence of different apex types on the qualitative image appearance, and quantitative short-range tip–sample force and dissipation. Experimental details We used a commercial low
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2012
Other Beilstein-Institut Open Science Activities