Search results

Search for "scaffold" in Full Text gives 84 result(s) in Beilstein Journal of Nanotechnology.

Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes

  • Subas K. Muduli,
  • Songling Wang,
  • Shi Chen,
  • Chin Fan Ng,
  • Cheng Hon Alfred Huan,
  • Tze Chien Sum and
  • Han Sen Soo

Beilstein J. Nanotechnol. 2014, 5, 517–523, doi:10.3762/bjnano.5.60

Graphical Abstract
  • the active species in RhB degradation. This new material is a promising candidate as a robust, earth-abundant, visible-light absorbing metal oxide scaffold to be used in DSPECs and other sustainable energy applications. (a) Powder XRD pattern of cerium oxide nanospheres. (b) Wide-scan XPS survey
PDF
Album
Supp Info
Letter
Published 24 Apr 2014

The softening of human bladder cancer cells happens at an early stage of the malignancy process

  • Jorge R. Ramos,
  • Joanna Pabijan,
  • Ricardo Garcia and
  • Malgorzata Lekka

Beilstein J. Nanotechnol. 2014, 5, 447–457, doi:10.3762/bjnano.5.52

Graphical Abstract
  • , cancer progression changes its role by using it as a tool to alter cell growth, stiffness, movement and invasiveness [26]. The actin cytoskeleton serves as a scaffold for signaling, as a connection to the extracellular environment, and as a mechanosensor. However, there is no general evidence that
PDF
Album
Supp Info
Full Research Paper
Published 10 Apr 2014

Exploring the complex mechanical properties of xanthan scaffolds by AFM-based force spectroscopy

  • Hao Liang,
  • Guanghong Zeng,
  • Yinli Li,
  • Shuai Zhang,
  • Huiling Zhao,
  • Lijun Guo,
  • Bo Liu and
  • Mingdong Dong

Beilstein J. Nanotechnol. 2014, 5, 365–373, doi:10.3762/bjnano.5.42

Graphical Abstract
  • 10.3762/bjnano.5.42 Abstract The polysaccharide xanthan has been extensively studied owing to its potential application in tissue engineering. In this paper, xanthan scaffold structures were investigated by atomic force microscope (AFM) in liquid, and the mechanical properties of the complex xanthan
  • structures were investigated by using AFM-based force spectroscopy (FS). In this work, three types of structures in the xanthan scaffold were identified based on three types of FS stretching events. The fact that the complex force responses are the combinations of different types of stretching events
  • suggests complicated intermolecular interactions among xanthan fibrils. The results provide crucial information to understand the structures and mechanical properties of the xanthan scaffold. Keywords: atomic force microscopy (AFM); force spectroscopy (FS); mechanical properties; xanthan scaffold
PDF
Album
Full Research Paper
Published 27 Mar 2014

Controlled synthesis and tunable properties of ultrathin silica nanotubes through spontaneous polycondensation on polyamine fibrils

  • Jian-Jun Yuan,
  • Pei-Xin Zhu,
  • Daisuke Noda and
  • Ren-Hua Jin

Beilstein J. Nanotechnol. 2013, 4, 793–804, doi:10.3762/bjnano.4.90

Graphical Abstract
  • crystalline nanofilament itself acts as a template that directs the silica morphology as well as a scaffold for the deposition of silica, and as a highly efficient catalyst for promoting the formation of silica. This leads to the facile formation of the one-dimensional LPEI@silica hybrid nanostructure
  • template/scaffold/catalysts for the controlled silicification that afforded LPEI@silica hybrid nanotubes, which can be subsequently changed into pure silica nanotubes by removing the organic LPEI. Moreover, we also addressed the possibility to synthesize silica–carbon composite nanotubes by exploiting
  • ) indicating the existence of hollow structure. SEM images demonstrated that the nanotubes synthesized from 5 min, 60 min and 240 min have similar mat morphology (Figure S1 in Supporting Information File 1). Obviously, LPEI fibrils exhibited the high-efficient ability as template/scaffold/catalyst for rapid
PDF
Album
Supp Info
Full Research Paper
Published 25 Nov 2013

Apertureless scanning near-field optical microscopy of sparsely labeled tobacco mosaic viruses and the intermediate filament desmin

  • Alexander Harder,
  • Mareike Dieding,
  • Volker Walhorn,
  • Sven Degenhard,
  • Andreas Brodehl,
  • Christina Wege,
  • Hendrik Milting and
  • Dario Anselmetti

Beilstein J. Nanotechnol. 2013, 4, 510–516, doi:10.3762/bjnano.4.60

Graphical Abstract
  • channel [25]. Apart from plant research, TMV is also important for nanotechnology applications of virus-derived biotemplates [26][27][28][29]. The self-assembly of the capsid components and the homogeneous nucleoprotein tube diameter make TMV an attractive scaffold for nanotechnological applications such
PDF
Album
Full Research Paper
Published 11 Sep 2013

Micro- and nanoscale electrical characterization of large-area graphene transferred to functional substrates

  • Gabriele Fisichella,
  • Salvatore Di Franco,
  • Patrick Fiorenza,
  • Raffaella Lo Nigro,
  • Fabrizio Roccaforte,
  • Cristina Tudisco,
  • Guido G. Condorelli,
  • Nicolò Piluso,
  • Noemi Spartà,
  • Stella Lo Verso,
  • Corrado Accardi,
  • Cristina Tringali,
  • Sebastiano Ravesi and
  • Filippo Giannazzo

Beilstein J. Nanotechnol. 2013, 4, 234–242, doi:10.3762/bjnano.4.24

Graphical Abstract
  • foil. After the etching process, the graphene membrane attached to the resist scaffold is mechanically attached to the target substrate and the resist is eliminated. There are two crucial points in this transfer technique: (i) promoting the adhesion of graphene onto the target substrate; and (ii
PDF
Album
Full Research Paper
Published 02 Apr 2013

A facile approach to nanoarchitectured three-dimensional graphene-based Li–Mn–O composite as high-power cathodes for Li-ion batteries

  • Wenyu Zhang,
  • Yi Zeng,
  • Chen Xu,
  • Ni Xiao,
  • Yiben Gao,
  • Lain-Jong Li,
  • Xiaodong Chen,
  • Huey Hoon Hng and
  • Qingyu Yan

Beilstein J. Nanotechnol. 2012, 3, 513–523, doi:10.3762/bjnano.3.59

Graphical Abstract
  • to improve the power density and cyclability of LIBs [17][18]. Basically, such a strategy is based on the design of a nanostructured, metal current collector, by using Cu or Al nanorods to form a 3D conducting scaffold, to improve the kinetics of Li diffusion and electron transfer in the electrode
  • materials involve high-temperature reactions that may destroy the graphene structure. Although a graphene-based cathode may be difficult to prepare, the conducting scaffold formed by graphene sheets is ideal for the formation of 3D architectured cathodes to improve the performance of LIB further, especially
  • the conducting scaffold of graphene sheets improves the kinetics of Li ion diffusion and electron transfer. The voltage profiles of the LMO/G (ILMO:G = 1.22) electrode under various discharge currents are presented in Figure 6c, which shows that the discharge voltages are maintained at >3.3 V even at
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2012

Surface functionalization of aluminosilicate nanotubes with organic molecules

  • Wei Ma,
  • Weng On Yah,
  • Hideyuki Otsuka and
  • Atsushi Takahara

Beilstein J. Nanotechnol. 2012, 3, 82–100, doi:10.3762/bjnano.3.10

Graphical Abstract
  • inorganic nanostructures instead of flat surfaces has been demonstrated to be an effective process for preparing various previously untested functional organic/inorganic nanohybrids. The organic parts generally provide functional groups for the nanohybrids, while the inorganic parts act as the scaffold for
  • ratios and ability to form network structures. It is no doubt that nanotubes with reactive surfaces and a reliable supply are preferred for the application as scaffold of organic molecules. Carbon nanotubes (CNTs) play an important role in the nanotube family. However, the surface of CNTs is inert for
  • adsorption and assembly of organic molecules on the imogolite surface is expected to produce interesting results. Imogolite may act as a one-dimensional scaffold for functional molecules. Moreover, the surface energy of imogolite nanotubes can be lowered by the organic layer, and this can greatly improve the
PDF
Album
Review
Published 02 Feb 2012

Self-organizing bioinspired oligothiophene–oligopeptide hybrids

  • Alexey K. Shaytan,
  • Eva-Kathrin Schillinger,
  • Elena Mena-Osteritz,
  • Sylvia Schmid,
  • Pavel G. Khalatur,
  • Peter Bäuerle and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2011, 2, 525–544, doi:10.3762/bjnano.2.57

Graphical Abstract
  • a common self-assembly mechanism, as discussed previously, it is natural to assume that similar peptide–peptide interactions play the structure-determining role during the aggregation of our hybrid compound and form the scaffold of the fibrils. Relying on the basic ideas and our current
  • molecules preserved their relative positions in the aggregates with respect to their neighbors, however, certain conformational rearrangements both at the molecular level and at the nanoscale were observed. In all the cases, the β-sheet organization dominated the structure and remained the main scaffold for
PDF
Album
Review
Published 05 Sep 2011
Other Beilstein-Institut Open Science Activities