Search results

Search for "silver nanoparticles" in Full Text gives 146 result(s) in Beilstein Journal of Nanotechnology.

Rapid synthesis of highly monodisperse AgSbS2 nanocrystals: unveiling multifaceted activities in cancer therapy, antibacterial strategies, and antioxidant defense

  • Funda Ulusu,
  • Adem Sarilmaz,
  • Yakup Ulusu,
  • Faruk Ozel and
  • Mahmut Kus

Beilstein J. Nanotechnol. 2025, 16, 2105–2115, doi:10.3762/bjnano.16.145

Graphical Abstract
  • , cardiovascular diseases, and diabetes [11][12]. Historically known especially for its antimicrobial properties, silver has been used since ancient times. Silver nanoparticles (AgNPs) are synthesized by different synthesis mechanisms; they are non-toxic to eukaryotic cells, including human cells, but highly toxic
  • signaling pathways. For example, green-synthesized silver nanoparticles were shown to induce ROS production and caspase-3/9 activation, leading to apoptosis in MCF-7 breast cancer cells [47]. Similarly, ROS-mediated cytotoxicity and apoptosis have been demonstrated in HepG2 liver carcinoma cells treated
PDF
Album
Full Research Paper
Published 19 Nov 2025

Laser ablation in liquids for shape-tailored synthesis of nanomaterials: status and challenges

  • Natalie Tarasenka

Beilstein J. Nanotechnol. 2025, 16, 1963–1997, doi:10.3762/bjnano.16.137

Graphical Abstract
PDF
Album
Perspective
Published 10 Nov 2025

On the road to sustainability – application of metallic nanoparticles obtained by green synthesis in dentistry: a scoping review

  • Lorena Pinheiro Vasconcelos Silva,
  • Joice Catiane Soares Martins,
  • Israel Luís Carvalho Diniz,
  • Júlio Abreu Miranda,
  • Danilo Rodrigues de Souza,
  • Éverton do Nascimento Alencar,
  • Moan Jéfter Fernandes Costa and
  • Pedro Henrique Sette-de-Souza

Beilstein J. Nanotechnol. 2025, 16, 1851–1862, doi:10.3762/bjnano.16.128

Graphical Abstract
  • in health-related nanotechnology [8][10]. It is considered a promising approach that integrates technological innovation, biological safety, and environmental responsibility [8][10][16]. An interesting example are silver nanoparticles, particularly those synthesized via green methods, which have
  • recently become the focus of significant attention [18][19]. The eco-friendly applications of AgNPs in the biomedical, pharmaceutical, cosmetic, sanitation, and electronic sectors have driven extensive research into their biosynthesis [20][21][22]. Silver nanoparticles exhibit unique physical and chemical
PDF
Album
Review
Published 22 Oct 2025

Nanomaterials for biomedical applications

  • Iqra Zainab,
  • Zohra Naseem,
  • Syeda Rubab Batool,
  • Filippo Pierini,
  • Seda Kizilel and
  • Muhammad Anwaar Nazeer

Beilstein J. Nanotechnol. 2025, 16, 1499–1503, doi:10.3762/bjnano.16.105

Graphical Abstract
  • well-suited for orthopedic implants. Likewise, the addition of silver nanoparticles provides antibacterial properties for the material. This action is helping to prevent infection during the recovery time [28][29]. One of the major advantages of using nanomaterials in tissue engineering is that they
  • silver nanoparticles in joint replacements or dental implants can decrease the chances of infections and support healing [37]. On implants, nanoscale coatings are also being used to mimic natural tissues more closely and to avoid immune rejection from the body. It is possible to make materials that
PDF
Editorial
Published 28 Aug 2025

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications

  • Akshana Parameswaran Sreekala,
  • Pooja Raveendran Nair,
  • Jithin Kundalam Kadavath,
  • Bindu Krishnan,
  • David Avellaneda Avellaneda,
  • M. R. Anantharaman and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 1428–1498, doi:10.3762/bjnano.16.104

Graphical Abstract
PDF
Album
Review
Published 27 Aug 2025

Photochemical synthesis of silver nanoprisms via green LED irradiation and evaluation of SERS activity

  • Tuan Anh Mai-Ngoc,
  • Nhi Kieu Vo,
  • Cong Danh Nguyen,
  • Thi Kim Xuan Nguyen and
  • Thanh Sinh Do

Beilstein J. Nanotechnol. 2025, 16, 1417–1427, doi:10.3762/bjnano.16.103

Graphical Abstract
  • applications. Keywords: light-emitting diodes (LEDs); photochemical synthesis; silver nanoprisms; surface-enhanced Raman scattering (SERS); trisodium citrate; Introduction Anisotropic silver nanoparticles (ASNPs) have attracted increasing attention from research groups worldwide due to their potential
  • step of the entire process [3]. During this stage, small silver nanoparticles (seeds) can combine and evolve into anisotropic nanostructures through a chemical process in the presence of hydrogen peroxide (H2O2) and sodium borohydride, commonly referred to as the Mirkin method [4]. Recently
  • spectra of the AgNPs seed shown in the Figure 1a displayed a single peak at 400 nm, indicating the presence of spherical silver nanoparticles with small sizes, consistent with studies in the literature [4][6][7]. The sample exhibited the characteristic yellow color of AgNPs. The TEM image and size
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2025

Synthesis and antibacterial properties of nanosilver-modified cellulose triacetate membranes for seawater desalination

  • Lei Wang,
  • Shizhe Li,
  • Kexin Xu,
  • Wenjun Li,
  • Ying Li and
  • Gang Liu

Beilstein J. Nanotechnol. 2025, 16, 1380–1391, doi:10.3762/bjnano.16.100

Graphical Abstract
  • silver nanoparticles. Conclusion To address the issue of microbial contamination in desalination membranes, we have developed an antibacterial Ag@PCTA membrane. Utilizing the catechol and nitrogen-containing groups in PDA as both crosslinking and reducing agents, we successfully introduced antimicrobial
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2025

Chitosan nanocomposite containing rotenoids: an alternative bioinsecticidal approach for the management of Aedes aegypti

  • Maria A. A. Bertonceli,
  • Vitor D. C. Cristo,
  • Ivo J. Vieira,
  • Francisco J. A. Lemos,
  • Arnoldo R. Façanha,
  • Raimundo Braz-Filho,
  • Gustavo V. T. Batista,
  • Luis G. M. Basso,
  • Sérgio H. Seabra,
  • Thalya S. R. Nogueira,
  • Felipe F. Moreira,
  • Arícia L. E. M. Assis,
  • Antônia E. A. Oliveira and
  • Kátia V. S. Fernandes

Beilstein J. Nanotechnol. 2025, 16, 1197–1208, doi:10.3762/bjnano.16.88

Graphical Abstract
  • studies have reported similar improvements in larvicidal activity through nanocarrier systems based on botanical insecticides. For instance, silver nanoparticles (AgNPs) synthesized using aqueous leaf extract of Ambrasia arborescens demonstrated markedly higher toxicity against Aedes aegypti larvae (LC50
  • = 0.28 ppm) compared to the crude aqueous extract (LC50 = 1844.61 ppm) [27]. Similarly, silver nanoparticles synthesized with aqueous extracts of Solanum mammosum (SmAgNPs) exhibited significantly greater toxicity (LC50 = 0.06 ppm) than the crude aqueous extract (LC50 = 1631.27 ppm) [28]. According to an
PDF
Album
Full Research Paper
Published 28 Jul 2025

Synthesis of biowaste-derived carbon-dot-mediated silver nanoparticles and the evaluation of electrochemical properties for supercapacitor electrodes

  • Navya Kumari Tenkayala,
  • Chandan Kumar Maity,
  • Md Moniruzzaman and
  • Subramani Devaraju

Beilstein J. Nanotechnol. 2025, 16, 933–943, doi:10.3762/bjnano.16.71

Graphical Abstract
  • of Korea 10.3762/bjnano.16.71 Abstract Herein, biowaste- (from Pongammia pinnata leaves) derived carbon dots (CDs) have been utilized as a mediator for the production of silver nanoparticles (PG-CDs-AgNPs) as a superior supercapacitor electrode. The methodology presented here is inexpensive and
  • electrodes for energy storing. Keywords: asymmetric supercapacitor; carbon dots; fluorescence emission; green approach; silver nanoparticles; Introduction The extensive usage of fossil fuels is a result from the rising demand for energy. However, the use of fossil fuels is not sufficient to attend the
  • synthesized cost-effective carbon-dot- (CD) mediated silver nanoparticles (AgNPs) for supercapacitor electrodes. AgNPs have garnered substantial interest due to their capacity to effectively facilitate biological, optical, chemical, electrical, and industrial applications [13][14]. AgNPs are widely utilized
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2025

Polyurethane/silk fibroin-based electrospun membranes for wound healing and skin substitute applications

  • Iqra Zainab,
  • Zohra Naseem,
  • Syeda Rubab Batool,
  • Muhammad Waqas,
  • Ahsan Nazir and
  • Muhammad Anwaar Nazeer

Beilstein J. Nanotechnol. 2025, 16, 591–612, doi:10.3762/bjnano.16.46

Graphical Abstract
  • neuronal development and embryonic stem cell culturing [161]. For biological applications, electrospun PU nanofibers including antibacterial substances such as silver nanoparticles, 4-vinylpyridine, or streptomycin sulfate were also created. These researches combined the use of wound dressings with the
PDF
Album
Review
Published 24 Apr 2025

Graphene oxide–chloroquine conjugate induces DNA damage in A549 lung cancer cells through autophagy modulation

  • Braham Dutt Arya,
  • Sandeep Mittal,
  • Prachi Joshi,
  • Alok Kumar Pandey,
  • Jaime E. Ramirez-Vick,
  • Govind Gupta and
  • Surinder P. Singh

Beilstein J. Nanotechnol. 2025, 16, 316–332, doi:10.3762/bjnano.16.24

Graphical Abstract
  • exposure to starch-capped silver nanoparticles (AgNPs) [11]. Gemcitabine-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles have been shown to enhance cell death in chemoresistant PANC1 cells, human pancreatic epithelial carcinoma cells [12]. Also, TiO2 nanoparticles can sensitize A549 cells
PDF
Album
Supp Info
Full Research Paper
Published 03 Mar 2025

Nanocarriers and macrophage interaction: from a potential hurdle to an alternative therapeutic strategy

  • Naths Grazia Sukubo,
  • Paolo Bigini and
  • Annalisa Morelli

Beilstein J. Nanotechnol. 2025, 16, 97–118, doi:10.3762/bjnano.16.10

Graphical Abstract
  • ]. In RA, the predominance of M1 macrophages in inflamed joints drives synovitis and cartilage destruction. Yang and colleagues developed folic acid-modified silver nanoparticles (FA-AgNPs) to target M1 macrophages via folate receptor-mediated endocytosis. Once internalized, these NPs scavenged ROS
PDF
Album
Review
Published 31 Jan 2025

Instance maps as an organising concept for complex experimental workflows as demonstrated for (nano)material safety research

  • Benjamin Punz,
  • Maja Brajnik,
  • Joh Dokler,
  • Jaleesia D. Amos,
  • Litty Johnson,
  • Katie Reilly,
  • Anastasios G. Papadiamantis,
  • Amaia Green Etxabe,
  • Lee Walker,
  • Diego S. T. Martinez,
  • Steffi Friedrichs,
  • Klaus M. Weltring,
  • Nazende Günday-Türeli,
  • Claus Svendsen,
  • Christine Ogilvie Hendren,
  • Mark R. Wiesner,
  • Martin Himly,
  • Iseult Lynch and
  • Thomas E. Exner

Beilstein J. Nanotechnol. 2025, 16, 57–77, doi:10.3762/bjnano.16.7

Graphical Abstract
  • based on differences in the particles’ sulfidation levels [35]. We note that the same reasons underpinned its selection for the discussion of instance maps in [28]. The instance map in Figure 3 delineates all steps of the synthesis of sulfidised silver nanoparticles (AgNPs). AgNPs are synthesised with a
PDF
Album
Supp Info
Full Research Paper
Published 22 Jan 2025

Facile synthesis of size-tunable L-carnosine-capped silver nanoparticles and their role in metal ion sensing and catalytic degradation of p-nitrophenol

  • Akash Kumar,
  • Ridhima Chadha,
  • Abhishek Das,
  • Nandita Maiti and
  • Rayavarapu Raja Gopal

Beilstein J. Nanotechnol. 2024, 15, 1576–1592, doi:10.3762/bjnano.15.124

Graphical Abstract
  • ʟ-carnosine in synthesizing tunable plasmonic silver nanoparticles (ʟ-car-AgNPs). The formation of ʟ-car-AgNPs was confirmed via UV–vis optical absorption spectroscopy, showing single and double plasmonic peaks, depending on the synthesis conditions. Physicochemical characterization using TEM, FTIR
  • with various contaminants. Keywords: catalysis; heavy metals; ʟ-carnosine; p-nitrophenol; silver nanoparticles; Introduction The persistent rise in environmental pollution, notably from heavy metal ions and organic pollutants, has propelled the development of innovative and efficient environmental
  • sustainability and public health. Silver nanoparticles (AgNPs) have attracted the interest of researchers worldwide in recent years because of their promising use in environmental chemistry. The unique optochemical properties of AgNPs, including high surface area to volume ratio, optical absorbance, excellent
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2024

Green synthesis of silver nanoparticles derived from algae and their larvicidal properties to control Aedes aegypti

  • Matheus Alves Siqueira de Assunção,
  • Douglas Dourado,
  • Daiane Rodrigues dos Santos,
  • Gabriel Bezerra Faierstein,
  • Mara Elga Medeiros Braga,
  • Severino Alves Junior,
  • Rosângela Maria Rodrigues Barbosa,
  • Herminio José Cipriano de Sousa and
  • Fábio Rocha Formiga

Beilstein J. Nanotechnol. 2024, 15, 1566–1575, doi:10.3762/bjnano.15.123

Graphical Abstract
  • for ways to control these insects, avoiding the use of conventional chemical insecticides that are proven to be toxic to nature. In the last years, there has been growing evidence for the potential of silver nanoparticles (AgNPs) to be ecologically benign alternatives to the commercially available
  • chemical reduction of metal ions through biological compounds can be used to synthesize non-toxic and environmentally safe “green” insecticide alternatives in the form of metal-based nanoparticles [15]. A promising option are silver nanoparticles (AgNPs) obtained through synthesis from natural extracts
  • containing secondary metabolites that act as reducing and stabilizing agents. Among these metabolites, alkanes, aromatics, phenols, ethers, amines, and amides stand out for their role in the reduction, stabilization, and capping of silver nanoparticles [11][16][17][18][19]. Compounds of natural origin are
PDF
Album
Review
Published 04 Dec 2024

Nanoarchitectonics with cetrimonium bromide on metal nanoparticles for linker-free detection of toxic metal ions and catalytic degradation of 4-nitrophenol

  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2024, 15, 1312–1332, doi:10.3762/bjnano.15.106

Graphical Abstract
  • metals and efficient degradation of 4-NP. For enabling linker-free/ligand-free detection of heavy metal ions and catalytic degradation of 4-NP, CTAB was engineered as a versatile capping agent on gold and silver nanoparticles. Various factors, including nanoparticle characteristics such as shape, size
  • does not allow for interactions with ligands via ion–ion interactions. Therefore, multiple surface modifications or linkers must be used for selective interaction between ligand and CTAB-capped gold and silver nanoparticles [7][9]. Contaminants in form of heavy metals and pollutant such as 4
  • and complex operational procedures [21]. Colorimetric detection of heavy metals and catalytic conversion of 4-nitrophenol can be achieved using CTAB-capped gold or silver nanoparticles because of their unique surface plasmon resonance (SPR) properties, allowing for a colorimetric analysis through a
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2024

Direct electron beam writing of silver using a β-diketonate precursor: first insights

  • Katja Höflich,
  • Krzysztof Maćkosz,
  • Chinmai S. Jureddy,
  • Aleksei Tsarapkin and
  • Ivo Utke

Beilstein J. Nanotechnol. 2024, 15, 1117–1124, doi:10.3762/bjnano.15.90

Graphical Abstract
  • . “Experimental” section) for focused electron beam-induced deposition (FEBID). (hfac)AgPMe3 is a white to light yellow solid, which was used before for chemical vapor deposition [32] and for growing silver nanoparticles by atomic layer deposition [33]. Like for other silver precursors, a pronounced halo and a
  • . Compared to the typically obtained granular structure of metallic nanoparticles in a carbonaceous matrix, the deposit composition and chemistry evolution are unexpected. The resulting deposit exhibits a carbon-rich body with a surface decorated with silver nanoparticles and an interfacial layer of
PDF
Album
Supp Info
Letter
Published 26 Aug 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
  • ]. This property allows the alginate-based nanoparticles to effectively bind and detect heavy metal ions present in water systems. The synthesis of alginate-based nanoparticles for metal sensing involves the incorporation of metallic nanoparticles, such as silver nanoparticles or zinc oxide nanoparticles
PDF
Album
Review
Published 22 Aug 2024

A review on the structural characterization of nanomaterials for nano-QSAR models

  • Salvador Moncho,
  • Eva Serrano-Candelas,
  • Jesús Vicente de Julián-Ortiz and
  • Rafael Gozalbes

Beilstein J. Nanotechnol. 2024, 15, 854–866, doi:10.3762/bjnano.15.71

Graphical Abstract
  • descriptor of the category “a” or “b” in our classification). Kudrinskiy et al. also modelled silver nanoparticles with different coatings without introducing directly the capping agent in the model, but only by observing the differences in size, reactivity, and electric behavior of the nanoforms with
PDF
Album
Supp Info
Review
Published 11 Jul 2024

Synthesis of silver–palladium Janus nanoparticles using co-sputtering of independent sources: experimental and theorical study

  • Maria J. Martínez-Carreón,
  • Francisco Solís-Pomar,
  • Abel Fundora,
  • Claudio D. Gutiérrez-Lazos,
  • Sergio Mejía-Rosales,
  • Hector N. Fernández-Escamilla,
  • Jonathan Guerrero-Sánchez,
  • Manuel F. Meléndrez and
  • Eduardo Pérez-Tijerina

Beilstein J. Nanotechnol. 2024, 15, 808–816, doi:10.3762/bjnano.15.67

Graphical Abstract
  • poisoning, resulting in an increase in the useful life of the catalyst. Chunling An et al. synthesized AgPd BNPs in aqueous solution with sizes from 4 to 5 nm and demonstrated that they exhibit greater electrocatalytic activity and better long-term performance than silver nanoparticles [9]. Janus
PDF
Album
Full Research Paper
Published 04 Jul 2024

Electrospun polysuccinimide scaffolds containing different salts as potential wound dressing material

  • Veronika Pálos,
  • Krisztina S. Nagy,
  • Rita Pázmány,
  • Krisztina Juriga-Tóth,
  • Bálint Budavári,
  • Judit Domokos,
  • Dóra Szabó,
  • Ákos Zsembery and
  • Angela Jedlovszky-Hajdu

Beilstein J. Nanotechnol. 2024, 15, 781–796, doi:10.3762/bjnano.15.65

Graphical Abstract
  • et al. investigated the effects of PSI scaffold against bacterial strains, and they noticed that narrow, clear zones were formed after 24 h of incubation. This phenomenon was explained by the change in pH during the hydrolyzation of the PSI. By adding silver nanoparticles to the PSI scaffold, the
PDF
Album
Supp Info
Full Research Paper
Published 02 Jul 2024

Potential of a deep eutectic solvent in silver nanoparticle fabrication for antibiotic residue detection

  • Le Hong Tho,
  • Bui Xuan Khuyen,
  • Ngoc Xuan Dat Mai and
  • Nhu Hoa Thi Tran

Beilstein J. Nanotechnol. 2024, 15, 426–434, doi:10.3762/bjnano.15.38

Graphical Abstract
  • Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam 10.3762/bjnano.15.38 Abstract Deep eutectic solvents (DESs) have recently emerged as an alternative solvent for nanoparticle synthesis. There have been numerous advancements in the fabrication of silver nanoparticles
  • biosensors are commonly made of LSPR materials [17]. With the development of synthesis techniques, numerous nanostructures of noble metals have been extensively studied to improve the intrinsic parameters of sensors. Silver nanoparticles (Ag NPs) exhibit great performance in sensing applications owing to the
PDF
Album
Full Research Paper
Published 16 Apr 2024

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • typical example, nanofibers composed of polygalacturonic acid, hyaluronic acid, and embedded silver nanoparticles were applied to recover wounded areas of albino rats in vivo [149]. In this nanocomposite, silver nanoparticles acted as an antioxidant, polygalacturonic acid acted as a reducing agent for
  • generating silver nanoparticles from silver ions, whereas hyaluronic acid enhanced hydrophilicity and strain activities. To enhance wound repair, metal or metal oxide-based nanoantioxidants can be conjugated with miRNA146a. Because of the capability of miRNA146a to downregulate IL-6 and IL-8 expression, this
PDF
Album
Review
Published 12 Apr 2024

New application of bimetallic Ag/Pt nanoplates in a colorimetric biosensor for specific detection of E. coli in water

  • Azam Bagheri Pebdeni,
  • Mohammad N. AL-Baiati and
  • Morteza Hosseini

Beilstein J. Nanotechnol. 2024, 15, 95–103, doi:10.3762/bjnano.15.9

Graphical Abstract
  • such as pathogens [14]. Functional nanomaterials with catalytic activity similar to enzymes (nanozymes) reveal substantial benefits over natural enzymes, such as ultrahigh environmental stability, appropriate catalytic activity, and ease of prototyping [15][16]. We created plate-like silver
  • nanoparticles (i.e., silver nanoplates, Ag NPLs) covered with a layer of Pt atoms to improve the peroxide activity of NPLs, and use them as colorimetric biosensor materials. Metallic NPLs were employed in a variety of applications, including antibacterial activity [17][18][19], hazardous dye removal [20
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2024

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • appropriate electrical conductivity [22]. Suspension of conductive fillers in the hydrogel structure, such as metallic particles (gold nanoparticles, silver nanoparticles) [23][24][25], carbon-based materials (GO graphene oxide, CNT carbon nanotubes) [26][27][28], and conductive polymers (polyaniline
  • ]. Cai et al. found some silver nanoparticles only slightly present in the skeleton of a PVA@DEL composite hydrogel [23]. Most of the Ag nanoparticles were observed in the wall of the hydrogel network. In our case, for the Hgel-MCO-cCB 1:3 sample, when the volume percentage of cCB was 17.1% (Table 3
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024
Other Beilstein-Institut Open Science Activities