Search results

Search for "sulfurization" in Full Text gives 8 result(s) in Beilstein Journal of Nanotechnology.

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • at 250 °C. The study shows that the SnO2/CuO nanoscale hybrid foam sensor outperforms the porous 3D network structure, mainly due to larger surface area, the formation of p–n junctions, and the sulfurization of CuO on metallic conductors. The foam sensor also showed a response to 20 ppm of hydrogen
PDF
Album
Supp Info
Review
Published 09 Nov 2021

Ultrathin Ni1−xCoxS2 nanoflakes as high energy density electrode materials for asymmetric supercapacitors

  • Xiaoxiang Wang,
  • Teng Wang,
  • Rusen Zhou,
  • Lijuan Fan,
  • Shengli Zhang,
  • Feng Yu,
  • Tuquabo Tesfamichael,
  • Liwei Su and
  • Hongxia Wang

Beilstein J. Nanotechnol. 2019, 10, 2207–2216, doi:10.3762/bjnano.10.213

Graphical Abstract
  • . The elemental composition of Ni1−xCoxS2, is shown in Figure 2a. Elements including Co, Ni, S, and O are detected, confirming the successful incorporation of sulfur in the material after sulfurization with a Ni/Co/S ratio of 1:1.5:5.8, respectively. The high content of Al is because the samples are
  • −1 are 120 F·g−1 (60 C·g−1), 95 F·g−1 (47.5 C·g−1), 76.2 F·g−1 (38.1 C·g−1), 52 F·g−1 (26 C·g−1), respectively. The specific capacitance of Ni1.7Co1.3O4 material is calculated from the charge and discharge curve (Supporting Information File 1, Figure S6a). After the sulfurization, the specific
  • of 3000 charge/discharge cycles at 10 A·g−1, Ni1−xCoxS2 retains 67% of its initial capacity, indicating a good cycling stability. The above results imply that this facile sulfurization method can be used as a universal method for enhancing the electrochemical performance of transition metal oxides
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2019

Optimization of Mo/Cr bilayer back contacts for thin-film solar cells

  • Nima Khoshsirat,
  • Fawad Ali,
  • Vincent Tiing Tiong,
  • Mojtaba Amjadipour,
  • Hongxia Wang,
  • Mahnaz Shafiei and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2018, 9, 2700–2707, doi:10.3762/bjnano.9.252

Graphical Abstract
  • mechanism of Cr and Na to the top layer, we first heated the Mo/Cr films on SLG to 550 °C for 30 min in argon atmosphere. This is the temperature that is normally used for sulfurization and selenization of CIGS and CZTS layers. Then XPS depth profiling was performed on the annealed Mo/Cr films to search for
  • a two-step process of sulfurization of stacked metallic layers of Cu/Sn/Zn. Then a 60 nm CdS buffer layer was deposited using chemical bath deposition (CBD). This was followed by sputtering of a 30 nm ZnO layer and a 350 nm ITO layer as transparent conductive oxide (TCO) layers. As the last step, a
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2018

Spin-coated planar Sb2S3 hybrid solar cells approaching 5% efficiency

  • Pascal Kaienburg,
  • Benjamin Klingebiel and
  • Thomas Kirchartz

Beilstein J. Nanotechnol. 2018, 9, 2114–2124, doi:10.3762/bjnano.9.200

Graphical Abstract
  • formation a short air exposure was shown to increase device performance but longer exposure times deteriorated the solar cell [45]. In another study post-sulfurization reduced the Sb2O3 content and thereby the concentration of deep traps which improved solar cell performance [6]. As an alternative to CBD
  • design of new precursors that could further enhance the efficiency of solution processed Sb2S3. For any new process pinhole-free layers with tuneable thickness and control over stoichiometry are desirable and correlation to device performance is insightful. Post-processing, such as sulfurization from gas
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2018

Toward the use of CVD-grown MoS2 nanosheets as field-emission source

  • Geetanjali Deokar,
  • Nitul S. Rajput,
  • Junjie Li,
  • Francis Leonard Deepak,
  • Wei Ou-Yang,
  • Nicolas Reckinger,
  • Carla Bittencourt,
  • Jean-Francois Colomer and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2018, 9, 1686–1694, doi:10.3762/bjnano.9.160

Graphical Abstract
  • deposited on SiO2 by sulfurization. The quality of the obtained NSs was analyzed by scanning electron and transmission electron microscopy, and Raman and X-ray photoelectron spectroscopy. The as-grown NSs were then successfully transferred to the substrates using a wet chemical etching method. The
  • ; molybdenum disulfide (MoS2); nanosheets; sulfurization; transmission electron microscopy (TEM); Introduction There is a great interest in the development of one- and two-dimensional (1D and 2D) materials for field-emission (FE) based cathodes using various nanostructured materials [1] for applications in
  • ]. Herein, we report on the FE properties of densely packed and uniformly distributed vertically aligned 2D MoS2 NSs, well adhered to the substrate. These NSs were synthesized by double sulfurization of sputter-deposited Mo films on Si (300 nm SiO2/Si) substrates. The FE properties assessment is carried out
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Sensing behavior of flower-shaped MoS2 nanoflakes: case study with methanol and xylene

  • Maryam Barzegar,
  • Masoud Berahman and
  • Azam Iraji zad

Beilstein J. Nanotechnol. 2018, 9, 608–615, doi:10.3762/bjnano.9.57

Graphical Abstract
  • Among various methods for preparing MoS2 few-layer sheets, we followed the synthesis process reported before in [23]. In short, the MoS2 sheets were synthesized through sulfurization of MoO3 powder in an aqueous medium as follows: 0.05 g MoO3 powder and 0.13 g thiourea were dissolved in 40 mL deionized
PDF
Album
Full Research Paper
Published 16 Feb 2018

Growth, structure and stability of sputter-deposited MoS2 thin films

  • Reinhard Kaindl,
  • Bernhard C. Bayer,
  • Roland Resel,
  • Thomas Müller,
  • Viera Skakalova,
  • Gerlinde Habler,
  • Rainer Abart,
  • Alexey S. Cherevan,
  • Dominik Eder,
  • Maxime Blatter,
  • Fabian Fischer,
  • Jannik C. Meyer,
  • Dmitry K. Polyushkin and
  • Wolfgang Waldhauser

Beilstein J. Nanotechnol. 2017, 8, 1115–1126, doi:10.3762/bjnano.8.113

Graphical Abstract
  • distance. MoS2 films with vertically aligned layers and thereby maximally exposing edge sites were converted from e-beam evaporated, ultrathin Mo films (≈5 nm thick) by a rapid sulfurization process in a horizontal tube furnace [20]. Furthermore, a maximised electrical conductivity in the MoS2 is desired
PDF
Album
Full Research Paper
Published 22 May 2017

Sb2S3 grown by ultrasonic spray pyrolysis and its application in a hybrid solar cell

  • Erki Kärber,
  • Atanas Katerski,
  • Ilona Oja Acik,
  • Arvo Mere,
  • Valdek Mikli and
  • Malle Krunks

Beilstein J. Nanotechnol. 2016, 7, 1662–1673, doi:10.3762/bjnano.7.158

Graphical Abstract
  • -porous TiO2 as the electron conductor have reached a conversion efficiency of 7.5% when post-deposition sulfurization and thermal treatment of Sb2S3 were used [17]. The introduction of atomic layer deposition (ALD) for growing Sb2S3 onto a meso-porous TiO2 substrate was successful with respective solar
PDF
Album
Supp Info
Full Research Paper
Published 10 Nov 2016
Other Beilstein-Institut Open Science Activities