Search results

Search for "supercapacitors" in Full Text gives 63 result(s) in Beilstein Journal of Nanotechnology.

Controllable physicochemical properties of WOx thin films grown under glancing angle

  • Rupam Mandal,
  • Aparajita Mandal,
  • Alapan Dutta,
  • Rengasamy Sivakumar,
  • Sanjeev Kumar Srivastava and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2024, 15, 350–359, doi:10.3762/bjnano.15.31

Graphical Abstract
  • [2]. WOx nanostructures, exhibiting high chemical and thermal stability, and structural flexibility, have obvious relevance in areas such as photocatalysis [22], electrochromism [23], supercapacitors [24], and lithium batteries [25] and have undergone extensive investigations during the last decades
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2024

Carbon nanotube-cellulose ink for rapid solvent identification

  • Tiago Amarante,
  • Thiago H. R. Cunha,
  • Claudio Laudares,
  • Ana P. M. Barboza,
  • Ana Carolina dos Santos,
  • Cíntia L. Pereira,
  • Vinicius Ornelas,
  • Bernardo R. A. Neves,
  • André S. Ferlauto and
  • Rodrigo G. Lacerda

Beilstein J. Nanotechnol. 2023, 14, 535–543, doi:10.3762/bjnano.14.44

Graphical Abstract
  • transistors, transparent conductors, gas sensors, supercapacitors, and pH sensors [41][42][47][48][49][50][51][52][53][54][55]. Different approaches to ink printing methods have been explored, such as aerosol jet, inkjet, syringe, roll-to-roll printing, and stamp methods [1][41][50]. In this work, we report a
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2023

Role of titanium and organic precursors in molecular layer deposition of “titanicone” hybrid materials

  • Arbresha Muriqi and
  • Michael Nolan

Beilstein J. Nanotechnol. 2022, 13, 1240–1255, doi:10.3762/bjnano.13.103

Graphical Abstract
  • Li ion batteries or pseudocapacitance supercapacitors [31]. These films were also employed as coatings of nano Si electrodes and successfully improved their performance [48]. As described above, different titanicone and Ti–organic MLD processes have been developed and although first principles
PDF
Album
Supp Info
Full Research Paper
Published 02 Nov 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • . Such an enhancement could also be found in the case of electrodes for supercapacitors. The carbons derived from the inverse opal single crystals showed excellent cycling stability [120]. When the networks do not have lattice similarity with the grown monocrystalline coordination polymers, the crystal
PDF
Album
Review
Published 12 Aug 2022

Electrical, electrochemical and structural studies of a chlorine-derived ionic liquid-based polymer gel electrolyte

  • Ashish Gupta,
  • Amrita Jain,
  • Manju Kumari and
  • Santosh K. Tripathi

Beilstein J. Nanotechnol. 2021, 12, 1252–1261, doi:10.3762/bjnano.12.92

Graphical Abstract
  • , researchers have been developing polymer electrolytes (solid/gel) as an alternative to commercial liquid-based electrolytes which are suitable for electrochemical devices, such as Li-ion batteries, solar cells, fuel cells, and supercapacitors [1][2][3][4][5]. The main aim is to increase the amorphous content
PDF
Album
Full Research Paper
Published 18 Nov 2021

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
PDF
Album
Supp Info
Review
Published 09 Nov 2021

Effects of temperature and repeat layer spacing on mechanical properties of graphene/polycrystalline copper nanolaminated composites under shear loading

  • Chia-Wei Huang,
  • Man-Ping Chang and
  • Te-Hua Fang

Beilstein J. Nanotechnol. 2021, 12, 863–877, doi:10.3762/bjnano.12.65

Graphical Abstract
  • properties in various fields, such as supercapacitors, integrated electrodes, catalysis, and sensors [10][11][12][13]. Furthermore, the interaction between graphene and matrix materials directly affects the mechanical properties of composites [14]. The van der Waals force between graphene and metals can
PDF
Album
Full Research Paper
Published 12 Aug 2021

Paper-based triboelectric nanogenerators and their applications: a review

  • Jing Han,
  • Nuo Xu,
  • Yuchen Liang,
  • Mei Ding,
  • Junyi Zhai,
  • Qijun Sun and
  • Zhong Lin Wang

Beilstein J. Nanotechnol. 2021, 12, 151–171, doi:10.3762/bjnano.12.12

Graphical Abstract
  • pattering process results in porous MCG structures (with pore sizes ranging from hundreds of nanometers to several microns), which can be used in various applications, such as mechanical energy harvesting devices, chemical sensors, and electrochemical supercapacitors. Screen printing is a facile, efficient
  • under all the applied current densities (Figure 10f). This application of P-TENGs provides a feasible and an effective way to construct self-powered electrochemical systems with a high output performance, enables the application of TENGs in the preparation of electrodes for supercapacitors with high
PDF
Album
Review
Published 01 Feb 2021

ZnO and MXenes as electrode materials for supercapacitor devices

  • Ameen Uddin Ammar,
  • Ipek Deniz Yildirim,
  • Feray Bakan and
  • Emre Erdem

Beilstein J. Nanotechnol. 2021, 12, 49–57, doi:10.3762/bjnano.12.4

Graphical Abstract
  • materials; electrodes; MXenes; supercapacitors; zinc oxide (ZnO); Introduction In this article, the past, the present, and the prospects of ZnO and MXenes are discussed in terms of their usage as electrode materials in supercapacitor devices. Recently, supercapacitors gained a lot of attention due to their
  • high power density as well as due to the potential to further increase the energy density. Supercapacitors may act as batteries in electrochemical performance tests. The choice of the materials, their morphology, dimension, and synthesis technique, as well the synergy with the other components of the
  • supercapacitor device are important factors in this scenario. Nowadays, ZnO as metal oxide and MXene as 2D materials are the rising stars of electrode materials in supercapacitors due to their highly controllable properties. Therefore, we review the findings about ZnO and MXene in terms of defect structures and
PDF
Album
Review
Published 13 Jan 2021

Seebeck coefficient of silicon nanowire forests doped by thermal diffusion

  • Shaimaa Elyamny,
  • Elisabetta Dimaggio and
  • Giovanni Pennelli

Beilstein J. Nanotechnol. 2020, 11, 1707–1713, doi:10.3762/bjnano.11.153

Graphical Abstract
  • , energy storage (supercapacitors), and, in particular, thermoelectric applications [15][16][17]. There are two main requirements to the fabrication of a leg for a thermoelectric generator that is based on a large number of silicon nanowires perpendicular to a substrate: 1) Electrical contacts need to
PDF
Album
Full Research Paper
Published 11 Nov 2020

Structure and electrochemical performance of electrospun-ordered porous carbon/graphene composite nanofibers

  • Yi Wang,
  • Yanhua Song,
  • Chengwei Ye and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 1280–1290, doi:10.3762/bjnano.11.112

Graphical Abstract
  • ; electrochemistry; electrode material; electrospinning method; ordered and porous nanofibers; supercapacitor; Introduction As the technology sector develops, societal demands for energy storage devices also increases. Supercapacitors, including electric double-layer capacitors (EDLCs) and pseudo-capacitance
  • improvement of the current supercapacitor electrochemical performance, the capacitance and cycle stability of supercapacitors are still subjects of research interest. Electrospinning is one of the most convenient methods to synthesize nanofibers in a continuous manner. Electrospinning has many advantages over
  • conductivity impedes their use in high-power-density supercapacitors. Therefore, by adding high-performance conductive materials one can enhance the electrochemical performance of carbon nanofibers. Experiments have shown that by introducing graphene into the carbon matrix, various mechanical and
PDF
Album
Full Research Paper
Published 27 Aug 2020

Exfoliation in a low boiling point solvent and electrochemical applications of MoO3

  • Matangi Sricharan,
  • Bikesh Gupta,
  • Sreejesh Moolayadukkam and
  • H. S. S. Ramakrishna Matte

Beilstein J. Nanotechnol. 2020, 11, 662–670, doi:10.3762/bjnano.11.52

Graphical Abstract
  • , the MoO3 dispersion in 2-butanone retains its intrinsic nature even after exposure to sunlight for 24 h. The composites of MoO3 nanosheets were used as an electrode material for supercapacitors and showed a high specific capacitance of 201 F·g−1 in a three-electrode configuration at a scan rate of 50
  • mV·s−1. Keywords: 2-butanone; liquid-phase exfoliation; low-boiling point solvent; molybdenum trioxide (MoO3); supercapacitors; Introduction The advent of graphene has opened a new area of research in the field of two-dimensional materials [1]. The extraordinary properties of graphene have led
  • were mixed with 5 wt % of PVDF and stirred overnight in NMP to form a thick paste. The paste was used to make a thin electrode film on carbon paper (1.5 cm × 1.5 cm) and dried in an oven at 60 °C. To fabricate two-electrode supercapacitors, two such electrodes were sandwiched between battery-grade
PDF
Album
Supp Info
Letter
Published 17 Apr 2020

Adsorptive removal of bulky dye molecules from water with mesoporous polyaniline-derived carbon

  • Hyung Jun An,
  • Jong Min Park,
  • Nazmul Abedin Khan and
  • Sung Hwa Jhung

Beilstein J. Nanotechnol. 2020, 11, 597–605, doi:10.3762/bjnano.11.47

Graphical Abstract
  • synthesis, high conductivity and nitrogen content. Porous carbon materials, with high porosity and nitrogen content, have also been obtained from PANI. In other words, functional carbon, for catalysts and supercapacitors can be derived from high temperature carbonization of PANI, especially in the co
PDF
Album
Supp Info
Full Research Paper
Published 08 Apr 2020

An advanced structural characterization of templated meso-macroporous carbon monoliths by small- and wide-angle scattering techniques

  • Felix M. Badaczewski,
  • Marc O. Loeh,
  • Torben Pfaff,
  • Dirk Wallacher,
  • Daniel Clemens and
  • Bernd M. Smarsly

Beilstein J. Nanotechnol. 2020, 11, 310–322, doi:10.3762/bjnano.11.23

Graphical Abstract
  • -ray scattering (WAXS); Introduction and Motivation Porous sp2-hybridized carbon materials are frequently used in various applications such as supercapacitors or batteries for the storage of electric energy, as filters for the purification of air or water, and in adsorption processes [1][2][3][4][5][6
  • accessible micro/mesoporosity between Ar and deuterated p-xylene. DPX serves as a representative substance for relevant applications (e.g., supercapacitors and filtering), since its molecule size is more comparable to common organic electrolytes such as tetrahydrofuran [58], acetonitrile [59], ethylene
PDF
Album
Supp Info
Correction
Full Research Paper
Published 10 Feb 2020

High-performance asymmetric supercapacitor made of NiMoO4 nanorods@Co3O4 on a cellulose-based carbon aerogel

  • Meixia Wang,
  • Jing Zhang,
  • Xibin Yi,
  • Benxue Liu,
  • Xinfu Zhao and
  • Xiaochan Liu

Beilstein J. Nanotechnol. 2020, 11, 240–251, doi:10.3762/bjnano.11.18

Graphical Abstract
  • 2000 cycles), indicating its wide applicability in energy storage. Finally, our results provide a general approach to the construction of CA and MOF-based composite materials with hierarchical porous structure for potential applications in supercapacitors. Keywords: carbon aerogel; hierarchically
  • ]. Among them, supercapacitors are promising candidates for energy storage owing to their advanced charge/discharge properties, the high power density and their long life cycles [5][6]. Based on the charge storage mechanism, supercapacitors can be classified into electrical double layer capacitors (EDLCs
  • conductivity of the Mo ion [17][18][19]. Unfortunately, despite the fact that NiMoO4 has a high theoretical capacitance, its widespread practical application in supercapacitors is still restricted due to its low practical capacitance as well as the poor rate performance and wettability. Therefore, the
PDF
Album
Supp Info
Full Research Paper
Published 21 Jan 2020

Simple synthesis of nanosheets of rGO and nitrogenated rGO

  • Pallellappa Chithaiah,
  • Madhan Mohan Raju,
  • Giridhar U. Kulkarni and
  • C. N. R. Rao

Beilstein J. Nanotechnol. 2020, 11, 68–75, doi:10.3762/bjnano.11.7

Graphical Abstract
  • hydrogen treated (H-rGO) samples. Keywords: nanosheets; nitrogenated reduced graphene oxide (N-rGO); reduced graphene oxide (rGO); supercapacitors; thermal decomposition; Introduction Graphene, the one atom thick two-dimensional material of sp2-hybridized carbon atoms has attracted much attention after
PDF
Album
Supp Info
Full Research Paper
Published 07 Jan 2020

Ultrathin Ni1−xCoxS2 nanoflakes as high energy density electrode materials for asymmetric supercapacitors

  • Xiaoxiang Wang,
  • Teng Wang,
  • Rusen Zhou,
  • Lijuan Fan,
  • Shengli Zhang,
  • Feng Yu,
  • Tuquabo Tesfamichael,
  • Liwei Su and
  • Hongxia Wang

Beilstein J. Nanotechnol. 2019, 10, 2207–2216, doi:10.3762/bjnano.10.213

Graphical Abstract
  • Engineering, Zhejiang University of Technology, Hangzhou, China 10.3762/bjnano.10.213 Abstract Transition metal compounds such as nickel cobalt sulfides (Ni–Co–S) are promising electrode materials for energy storage devices such as supercapacitors owing to their high electrochemical performance and good
  • energy density of 67.5 Wh·kg−1) and excellent cycling stability. This approach can be a low-cost way to mass-produce high-performance electrode materials for supercapacitors. Keywords: electrode materials; high energy density; in situ phase transformation; NiCo sulfide; supercapacitors; ultrathin
  • nanoflakes; Introduction Supercapacitors (SCs) or electrochemical capacitors (ECs) are regarded as important energy storage devices that provide instantaneous power output to run cranes, subways or trains. They exhibit high power density, long cycling lifetime and fast charge/discharge rates [1][2
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2019

Facile synthesis of carbon nanotube-supported NiO//Fe2O3 for all-solid-state supercapacitors

  • Shengming Zhang,
  • Xuhui Wang,
  • Yan Li,
  • Xuemei Mu,
  • Yaxiong Zhang,
  • Jingwei Du,
  • Guo Liu,
  • Xiaohui Hua,
  • Yingzhuo Sheng,
  • Erqing Xie and
  • Zhenxing Zhang

Beilstein J. Nanotechnol. 2019, 10, 1923–1932, doi:10.3762/bjnano.10.188

Graphical Abstract
  • Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China 10.3762/bjnano.10.188 Abstract We have successfully prepared iron oxide and nickel oxide on carbon nanotubes on carbon cloth for the use in supercapacitors via a simple aqueous reduction method. The obtained
  • supercapacitors. Keywords: aqueous reduction; carbon nanotubes; iron oxide; nickel oxide; supercapacitors; Introduction Supercapacitors offer long cycling life, superior charge–recharge ability, high power density, and wide operating temperature [1][2][3]. However, the low energy density limits their
  • application in various energy-consuming devices. Many materials have been explored to be used in supercapacitors to increase their energy density [4][5]. Carbon materials, especially carbon nanotubes and graphene, endowed with good conductivity and high specific surface area, are ideal candidates, and they
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2019

High-tolerance crystalline hydrogels formed from self-assembling cyclic dipeptide

  • Yongcai You,
  • Ruirui Xing,
  • Qianli Zou,
  • Feng Shi and
  • Xuehai Yan

Beilstein J. Nanotechnol. 2019, 10, 1894–1901, doi:10.3762/bjnano.10.184

Graphical Abstract
  • -assembly of cyclic dipeptides results in highly robust hydrogels which can be applied for electrochemical applications such as electrochemical supercapacitors. Keywords: crystalline hydrogel; cyclic dipeptide; electrochemical supercapacitors; nanoarchitectonics; self-assembly; Introduction On account of
  • applications in harsh environments, such as those of electrochemical supercapacitors. Application in electrochemical supercapacitors Inspired by the high stability in harsh environments, we next investigated the application of the C-WY hydrogel as a candidate material for electrochemical supercapacitors
  • voltammetry (CV) curves of the hydrogel at different scan rates ranging from 10 to 40 mV were studied (Figure 4A). Typical capacitor shapes were observed in the curves, indicating that the C-WY hydrogel can be applied for electrochemical supercapacitors. In addition, the capacitive charge–discharge curves
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2019

Charge-transfer interactions between fullerenes and a mesoporous tetrathiafulvalene-based metal–organic framework

  • Manuel Souto,
  • Joaquín Calbo,
  • Samuel Mañas-Valero,
  • Aron Walsh and
  • Guillermo Mínguez Espallargas

Beilstein J. Nanotechnol. 2019, 10, 1883–1893, doi:10.3762/bjnano.10.183

Graphical Abstract
  • catalysis [3][4][5]. In addition, electroactive MOFs combining porosity and electrical conductivity [6][7][8] have also attracted much attention during the last years in view of their potential application, for example as chemiresistive sensors [9], field-effect transistors [10] or supercapacitors [11
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2019

Layered double hydroxide/sepiolite hybrid nanoarchitectures for the controlled release of herbicides

  • Ediana Paula Rebitski,
  • Margarita Darder and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2019, 10, 1679–1690, doi:10.3762/bjnano.10.163

Graphical Abstract
  • components in diverse electrochemical devices (such as supercapacitors, sensors, and biosensors), in drug delivery and controlled-release formulations, or in non-viral gene transfection [21][22][23][24][25][26]. The fact that the stability of LDH varies with the pH value has proved advantageous in some of
PDF
Album
Supp Info
Full Research Paper
Published 09 Aug 2019

Subsurface imaging of flexible circuits via contact resonance atomic force microscopy

  • Wenting Wang,
  • Chengfu Ma,
  • Yuhang Chen,
  • Lei Zheng,
  • Huarong Liu and
  • Jiaru Chu

Beilstein J. Nanotechnol. 2019, 10, 1636–1647, doi:10.3762/bjnano.10.159

Graphical Abstract
  • force microscopy (AFM); contact resonance atomic force microscopy (CR-AFM); contact stiffness; defect detection; flexible circuits; subsurface imaging; Introduction With the rapid shrinkage of microelectronic devices, flexible circuits are intensively used while being functionalized as supercapacitors
PDF
Album
Full Research Paper
Published 07 Aug 2019

Upcycling of polyurethane waste by mechanochemistry: synthesis of N-doped porous carbon materials for supercapacitor applications

  • Christina Schneidermann,
  • Pascal Otto,
  • Desirée Leistenschneider,
  • Sven Grätz,
  • Claudia Eßbach and
  • Lars Borchardt

Beilstein J. Nanotechnol. 2019, 10, 1618–1627, doi:10.3762/bjnano.10.157

Graphical Abstract
  • values of 1–8 wt %, high specific surface area values of up to 2150 m2·g−1 (at a N content of 1.6 wt %) and large pore volume values of up to 0.9 cm3·g−1. The materials were tested as electrodes for supercapacitors in aqueous 1 M Li2SO4 electrolyte (100 F·g−1), organic 1 M TEA-BF4 (ACN, 83 F·g−1) and
  • applications in catalysis [24][25][26], gas sorption/separation [27][28][29] and electrochemical energy storage/conversion. For the latter, porous carbon materials are established as electrode materials in fuel cells [30][31][32][33], Li–S cells [34][35][36][37], and supercapacitors [38]. In addition, these
  • and a total pore volume of up to 0.9 cm3·g−1. In order to generate different nitrogen contents and to increase the porosity of the carbon material, we used different ratios of urea and K2CO3. Moreover, the N-doped carbon materials have been investigated as electrode material for supercapacitors in
PDF
Album
Supp Info
Full Research Paper
Published 06 Aug 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • . The nanoarchitecture materials can be used for various applications such as molecular recognition, sensors, photodetectors, supercapacitors, supramolecular differentiation, enzyme reactors, cell differentiation control, and hemodialysis. Keywords: film; interface; low-dimensional material
  • reported. Jayavel, Shrestha, and co-workers demonstrated the enhanced performance of electrochemical supercapacitors using composites of cobalt oxide nanoparticles and reduced graphene oxide, which are zero-dimensional and two-dimensional nanomaterials, respectively [86]. Leong and co-workers reported a
  • supercapacitors. Shrestha, Acharya, and co-workers investigated the optoelectronic properties of one-dimensional C60 nanorods prepared in ultra-rapid (5 s) processes of liquid–liquid interfacial precipitation at room temperature [244]. Dominant excitonic charge transfer transitions within the nanorods was
PDF
Album
Review
Published 30 Jul 2019

Flexible freestanding MoS2-based composite paper for energy conversion and storage

  • Florian Zoller,
  • Jan Luxa,
  • Thomas Bein,
  • Dina Fattakhova-Rohlfing,
  • Daniel Bouša and
  • Zdeněk Sofer

Beilstein J. Nanotechnol. 2019, 10, 1488–1496, doi:10.3762/bjnano.10.147

Graphical Abstract
  • material. The highest capacitance achieved was 33 mF·cm−2 at a current density of 1 mA·cm−2, demonstrating potential application in supercapacitors. We further used the material as a cathode for the hydrogen evolution reaction (HER) with an onset potential of approximately −0.2 V vs RHE. The onset
  • devices where high flexibility and mechanical strength are desired. Keywords: flexible composites; hydrogen evolution reaction (HER); lithium ion batteries (LIBs); molybdenum disulfide; nanoarchitectonics; supercapacitors; Introduction The world’s growing population has a nearly ever-increasing demand
  • LIBs, supercapacitors (SCs) are seen as next-generation energy storage devices having a high specific power, fast charge–discharge rate and excellent cycling stability [2]. Freestanding, binder-free electrodes are also of great interest, as they can be used in flexible SCs [26]. In this regard, two
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019
Other Beilstein-Institut Open Science Activities