Search results

Search for "superparamagnetic iron oxide" in Full Text gives 44 result(s) in Beilstein Journal of Nanotechnology.

Cytotoxicity of doxorubicin-conjugated poly[N-(2-hydroxypropyl)methacrylamide]-modified γ-Fe2O3 nanoparticles towards human tumor cells

  • Zdeněk Plichta,
  • Yulia Kozak,
  • Rostyslav Panchuk,
  • Viktoria Sokolova,
  • Matthias Epple,
  • Lesya Kobylinska,
  • Pavla Jendelová and
  • Daniel Horák

Beilstein J. Nanotechnol. 2018, 9, 2533–2545, doi:10.3762/bjnano.9.236

Graphical Abstract
  • toxicity [5][6]. Superparamagnetic iron oxide nanoparticles with well-defined sizes, morphologies and surface are extremely useful in many different areas, in particular in biomedicine. As drug-delivery vehicles, such particles offer significant advantages compared to conventional drug formulations [7][8
  • (HPMA-MMAA)-Dox) and compared to control (Figure 11). Both free Dox and γ-Fe2O3@P(HPMA-MMAA)-Dox nanoparticles induced cell death as documented by an increased number of dead cells and decreased number of live cells (Figure 11). Conclusion Superparamagnetic iron oxide nanoparticles can be manipulated
PDF
Album
Full Research Paper
Published 25 Sep 2018

Surface characterization of nanoparticles using near-field light scattering

  • Eunsoo Yoo,
  • Yizhong Liu,
  • Chukwuazam A. Nwasike,
  • Sebastian R. Freeman,
  • Brian C. DiPaolo,
  • Bernardo Cordovez and
  • Amber L. Doiron

Beilstein J. Nanotechnol. 2018, 9, 1228–1238, doi:10.3762/bjnano.9.114

Graphical Abstract
  • )-coated superparamagnetic iron oxide nanoparticles (PEG-SPIOs) with the synthetic pseudotannin polygallol via interpolymer complexation (IPC). Changes in particle size and zeta potential were indirectly assessed via differences between PEG-SPIOs and IPC-SPIOs in particle velocity and scattering intensity
  • reaction kinetics at the particle surface. Keywords: nanoparticle surface properties; nanoparticles; nanophotonic force microscopy; near-field light scattering; superparamagnetic iron oxide; Introduction Nanotechnology is an increasingly integral part of modern medicine, predominantly in the fields of
  • , namely uncoated superparamagnetic iron oxide nanoparticles, polyethylene glycol-coated superparamagnetic iron oxide nanoparticles, and interpolymer complex-superparamagnetic iron oxide nanoparticles, were studied for changes in collective size and surface properties using an analysis of particle velocity
PDF
Album
Full Research Paper
Published 18 Apr 2018

Methionine-mediated synthesis of magnetic nanoparticles and functionalization with gold quantum dots for theranostic applications

  • Arūnas Jagminas,
  • Agnė Mikalauskaitė,
  • Vitalijus Karabanovas and
  • Jūrate Vaičiūnienė

Beilstein J. Nanotechnol. 2017, 8, 1734–1741, doi:10.3762/bjnano.8.174

Graphical Abstract
  • Biocompatible superparamagnetic iron oxide nanoparticles (NPs) through smart chemical functionalization of their surface with fluorescent species, therapeutic proteins, antibiotics, and aptamers offer remarkable potential for diagnosis and therapy of disease sites at their initial stage of growth. Such NPs can
PDF
Album
Full Research Paper
Published 22 Aug 2017

Improved biocompatibility and efficient labeling of neural stem cells with poly(L-lysine)-coated maghemite nanoparticles

  • Igor M. Pongrac,
  • Marina Dobrivojević,
  • Lada Brkić Ahmed,
  • Michal Babič,
  • Miroslav Šlouf,
  • Daniel Horák and
  • Srećko Gajović

Beilstein J. Nanotechnol. 2016, 7, 926–936, doi:10.3762/bjnano.7.84

Graphical Abstract
  • track stem cells by magnetic resonance imaging (MRI) [11], and superparamagnetic iron oxide nanoparticles are particularly used for this purpose [12][13][14][15]. The efficient cellular uptake of nanoparticles, which would not interfere with the labeled cell activities is crucial for reliable cell
PDF
Album
Full Research Paper
Published 27 Jun 2016

Surface coating affects behavior of metallic nanoparticles in a biological environment

  • Darija Domazet Jurašin,
  • Marija Ćurlin,
  • Ivona Capjak,
  • Tea Crnković,
  • Marija Lovrić,
  • Michal Babič,
  • Daniel Horák,
  • Ivana Vinković Vrček and
  • Srećko Gajović

Beilstein J. Nanotechnol. 2016, 7, 246–262, doi:10.3762/bjnano.7.23

Graphical Abstract
  • Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia 10.3762/bjnano.7.23 Abstract Silver (AgNPs) and maghemite, i.e., superparamagnetic iron oxide nanoparticles (SPIONs) are promising candidates for new
  • currently in use for medical purposes [3], for example silver nanoparticles (AgNPs) and superparamagnetic iron oxide nanoparticles (SPIONs). AgNPs are exploited in medicine for biocidal therapy owing to their antibacterial, antifungal, antiviral, and anti-inflammatory properties. In addition, they attract
  • silver and superparamagnetic iron oxide NPs [46] in different biological environments was investigated in adherence to the experimental scheme presented in Figure 1. Characteristics of prepared AgNPs and SPIONs As the first step, the physicochemical properties of freshly synthesized NPs were carefully
PDF
Album
Full Research Paper
Published 15 Feb 2016

Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

  • Shanka Walia and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2015, 6, 546–558, doi:10.3762/bjnano.6.57

Graphical Abstract
  • using different contrast agents (CAs). The ideal CA should be stable, tissue specific, less toxic with longer shelf life and a reasonable clearing period. The most common MRI CAs are paramagnetic chelated lanthanide complexes (positive contrast, T1-enhanced) and superparamagnetic iron oxide NPs
  • oxide or lanthanide complexes as magnetic and ruthenium or lanthanide complexes as fluorescent probe Superparamagnetic iron oxide NPs have been widely studied as MRI contrast agents for biological systems. These are less toxic compared to their chelated lanthanide counterparts. Again, because of the
  • found that the NPs emitted green light at 510 nm. The magnetic studies suggested that the nanocomposites exhibited typical property of superparamagnetic iron oxide by shortening the relaxation time T2. The cell uptake experiment of these nanocomposites was performed with human mesenchymal stem cells
PDF
Album
Review
Published 24 Feb 2015

Caveolin-1 and CDC42 mediated endocytosis of silica-coated iron oxide nanoparticles in HeLa cells

  • Nils Bohmer and
  • Andreas Jordan

Beilstein J. Nanotechnol. 2015, 6, 167–176, doi:10.3762/bjnano.6.16

Graphical Abstract
  • line. Cells were transfected with specific siRNAs against Caveolin-1, Dynamin 2, Flotillin-1, Clathrin, PIP5Kα and CDC42. Knockdown of Caveolin-1 reduces endocytosis of superparamagnetic iron oxide nanoparticles (SPIONs) and silica-coated iron oxide nanoparticles (SCIONs) between 23 and 41%, depending
  • nanoparticle species, which are taken up specifically by target cells and exploit their maximum potential. In this study differently modified silica coated superparamagnetic iron oxide nanoparticles (SPIONs) and silica coated iron oxide nanoparticles (SCIONs), which were all comparable in their primary size
  • and surface charge, were tested in HeLa cells as a model cell line. To elucidate, which molecular pathways are involved in their endocytosis, well-known endocytotic mechanisms [26][27][28] were inhibited by specific knockdown of key proteins via siRNA (Figure 1). Experimental Superparamagnetic iron
PDF
Album
Full Research Paper
Published 14 Jan 2015

The distribution and degradation of radiolabeled superparamagnetic iron oxide nanoparticles and quantum dots in mice

  • Denise Bargheer,
  • Artur Giemsa,
  • Barbara Freund,
  • Markus Heine,
  • Christian Waurisch,
  • Gordon M. Stachowski,
  • Stephen G. Hickey,
  • Alexander Eychmüller,
  • Jörg Heeren and
  • Peter Nielsen

Beilstein J. Nanotechnol. 2015, 6, 111–123, doi:10.3762/bjnano.6.11

Graphical Abstract
  • , Germany Institute of Physical Chemistry and Electrochemistry, Technical University of Dresden, Bergstr. 66b, 01069 Dresden, Germany 10.3762/bjnano.6.11 Abstract 51Cr-labeled, superparamagnetic, iron oxide nanoparticles (51Cr-SPIOs) and 65Zn-labeled CdSe/CdS/ZnS-quantum dots (65Zn-Qdots) were prepared
  • kinetics, targeting efficacy and the acute as well as the chronic toxicity of both nanoparticle systems is needed. We are interested in techniques that allow the quantification of nanoparticles in vivo and have already developed a post-synthetic method to radiolabel the cores of superparamagnetic iron
  • oxide particles (SPIOs) [24]. In this sense, radiolabeling could become a powerful tool for the full quantification of the particokinetic details. However, it requires special equipment and knowledge, and the selection of appropriate isotopes is critical. We here report on the advantages and
PDF
Album
Full Research Paper
Published 09 Jan 2015

The fate of a designed protein corona on nanoparticles in vitro and in vivo

  • Denise Bargheer,
  • Julius Nielsen,
  • Gabriella Gébel,
  • Markus Heine,
  • Sunhild C. Salmen,
  • Roland Stauber,
  • Horst Weller,
  • Joerg Heeren and
  • Peter Nielsen

Beilstein J. Nanotechnol. 2015, 6, 36–46, doi:10.3762/bjnano.6.5

Graphical Abstract
  • Chemistry, University Hamburg, Grindelallee 117, 20146 Hamburg, Germany Molecular and Cellular Oncology, ENT/University Medical Center Mainz, Langenbeckstr. 1, 55101 Mainz, Germany 10.3762/bjnano.6.5 Abstract A variety of monodisperse superparamagnetic iron oxide particles (SPIOs) was designed in which the
  • diagnostic using functionalized SPIOs in magnetic resonance imaging. Experimental Synthesis of nanoparticle The superparamagnetic iron oxide nanoparticle was synthesized according to reported procedures with slight modifications [24]. In brief, a mixture of 0.178 g FeOOH (2.0 mmol), 2.26 g oleic acid (8.0
PDF
Album
Full Research Paper
Published 06 Jan 2015

Functionalized polystyrene nanoparticles as a platform for studying bio–nano interactions

  • Cornelia Loos,
  • Tatiana Syrovets,
  • Anna Musyanovych,
  • Volker Mailänder,
  • Katharina Landfester,
  • G. Ulrich Nienhaus and
  • Thomas Simmet

Beilstein J. Nanotechnol. 2014, 5, 2403–2412, doi:10.3762/bjnano.5.250

Graphical Abstract
  • used superparamagnetic iron oxide nanoparticles. Keywords: amino groups; apoptosis; carboxyl groups; cell proliferation; leukemia cell lines; macrophages; mTOR; polystyrene nanoparticles; Review Applications of polystyrene Polystyrene, one of the most extensively used types of plastic [1], is an
  • recognition and internalization of particulate matter including nanoparticles. As a consequence, macrophages accumulate with time a main portion of nanoparticles incorporated by the body [25]. Thus, the clinically approved superparamagnetic iron oxide (SPIO) MRI contrast agent ResovistTM is taken up after
PDF
Album
Review
Published 15 Dec 2014

Nanoparticle interactions with live cells: Quantitative fluorescence microscopy of nanoparticle size effects

  • Li Shang,
  • Karin Nienhaus,
  • Xiue Jiang,
  • Linxiao Yang,
  • Katharina Landfester,
  • Volker Mailänder,
  • Thomas Simmet and
  • G. Ulrich Nienhaus

Beilstein J. Nanotechnol. 2014, 5, 2388–2397, doi:10.3762/bjnano.5.248

Graphical Abstract
  • . Based on studies of the uptake of carboxydextran-coated superparamagnetic iron oxide NPs of 20 and 60 nm by human macrophages, Lunov et al. [49] developed a mathematical model that predicts the wrapping times of different NPs. In addition, the relation between membrane elasticity, cytoskeletal forces
PDF
Album
Full Research Paper
Published 11 Dec 2014

Inorganic Janus particles for biomedical applications

  • Isabel Schick,
  • Steffen Lorenz,
  • Dominik Gehrig,
  • Stefan Tenzer,
  • Wiebke Storck,
  • Karl Fischer,
  • Dennis Strand,
  • Frédéric Laquai and
  • Wolfgang Tremel

Beilstein J. Nanotechnol. 2014, 5, 2346–2362, doi:10.3762/bjnano.5.244

Graphical Abstract
  • magnetic nanoparticles in the late 1970’s for the first time [83]. Nowadays, superparamagnetic iron oxide nanoparticle-based MRI contrast agents are used in clinical applications [84]. Further, iron oxide based nanoparticles are in focus of research for their application as MRI contrast agents, including
PDF
Album
Review
Published 05 Dec 2014

Influence of surface-modified maghemite nanoparticles on in vitro survival of human stem cells

  • Michal Babič,
  • Daniel Horák,
  • Lyubov L. Lukash,
  • Tetiana A. Ruban,
  • Yurii N. Kolomiets,
  • Svitlana P. Shpylova and
  • Oksana A. Grypych

Beilstein J. Nanotechnol. 2014, 5, 1732–1737, doi:10.3762/bjnano.5.183

Graphical Abstract
  • for the above mentioned purposes [9]. Monosized iron oxide nanoparticles, sometimes called ultra-small superparamagnetic iron oxide nanoparticles, play the dominant role. Quantum dots, gold and, recently, also upconversion nanoparticles are used less frequently. The main advantages of iron oxides
PDF
Album
Full Research Paper
Published 08 Oct 2014

A sonochemical approach to the direct surface functionalization of superparamagnetic iron oxide nanoparticles with (3-aminopropyl)triethoxysilane

  • Bashiru Kayode Sodipo and
  • Azlan Abdul Aziz

Beilstein J. Nanotechnol. 2014, 5, 1472–1476, doi:10.3762/bjnano.5.160

Graphical Abstract
  • Sains Malaysia, 11800 Pulau Pinang, Malaysia 10.3762/bjnano.5.160 Abstract We report a sonochemical method of functionalizing superparamagnetic iron oxide nanoparticles (SPION) with (3-aminopropyl)triethoxysilane (APTES). Mechanical stirring, localized hot spots and other unique conditions generated by
  • ; superparamagnetic iron oxide nanoparticles (SPION); Findings Superparamagnetic iron oxide nanoparticles (SPION) have a wide range of applications in biomedical research and development. The main drawbacks of SPION are a high surface energy, van der Waals forces of attraction and dipole to dipole interactions that
PDF
Album
Supp Info
Letter
Published 08 Sep 2014

The cell-type specific uptake of polymer-coated or micelle-embedded QDs and SPIOs does not provoke an acute pro-inflammatory response in the liver

  • Markus Heine,
  • Alexander Bartelt,
  • Oliver T. Bruns,
  • Denise Bargheer,
  • Artur Giemsa,
  • Barbara Freund,
  • Ludger Scheja,
  • Christian Waurisch,
  • Alexander Eychmüller,
  • Rudolph Reimer,
  • Horst Weller,
  • Peter Nielsen and
  • Joerg Heeren

Beilstein J. Nanotechnol. 2014, 5, 1432–1440, doi:10.3762/bjnano.5.155

Graphical Abstract
  • .5.155 Abstract Semiconductor quantum dots (QD) and superparamagnetic iron oxide nanocrystals (SPIO) have exceptional physical properties that are well suited for biomedical applications in vitro and in vivo. For future applications, the direct injection of nanocrystals for imaging and therapy represents
  • : hepatocytes; inflammation; Kupffer cells; liver sinusoidal endothelial cells; nanoparticle toxicity; nanoparticle uptake; quantum dots; superparamagnetic iron-oxide nanocrystals; Introduction The superior optical properties of QDs compared to organic dyes render them promising candidates for the demands of
  • employing various cell culture systems described toxic effects of QDs [3][4]. Iron-containing superparamagnetic iron oxide nanocrystals (SPIOs) used for magnetic resonance imaging (MRI) have a relative good reputation given that iron is an essential trace element and it can be assumed that iron from
PDF
Album
Full Research Paper
Published 02 Sep 2014

PEGylated versus non-PEGylated magnetic nanoparticles as camptothecin delivery system

  • Paula M. Castillo,
  • Mario de la Mata,
  • Maria F. Casula,
  • José A. Sánchez-Alcázar and
  • Ana P. Zaderenko

Beilstein J. Nanotechnol. 2014, 5, 1312–1319, doi:10.3762/bjnano.5.144

Graphical Abstract
  • by means of nano-formulations cover a wide range of organic nanomaterials [11][12][13][14][15][16][17][18][19]. Noticeably, a cyclodextrin-containing polymer–CPT nano-formulation is currently undergoing phase II clinical trials [20]. Superparamagnetic iron oxide nanoparticles (SPION) are particularly
PDF
Album
Supp Info
Letter
Published 19 Aug 2014

Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated γ-Fe2O3 nano-sized particles and assessment of their effects on glutamate transport

  • Tatiana Borisova,
  • Natalia Krisanova,
  • Arsenii Borуsov,
  • Roman Sivko,
  • Ludmila Ostapchenko,
  • Michal Babic and
  • Daniel Horak

Beilstein J. Nanotechnol. 2014, 5, 778–788, doi:10.3762/bjnano.5.90

Graphical Abstract
  • showed both negative and positive effects [1]. One of the concerns is that nanoparticles can potentially harm the function of or have toxic effects on human nerve cells owing to their ability to pass through biological membranes [2]. Superparamagnetic iron oxide nanoparticles are considered as promising
  • acidification of synaptic vesicles in nerve terminals by using pH-sensitive fluorescent dye acridine orange. Results D-Mannose-coated superparamagnetic γ-Fe2O3 nanoparticles: Synthesis and characterization In this paper, superparamagnetic iron oxide nanoparticles were synthesized by the well-known precipitation
  • -fifth of the nanoparticles deposited on the olfactory mucosa can move to the olfactory bulb of rat brain providing a portal for entry into the central nervous system circumventing the blood–brain barrier [25]. In an in vitro model, it was shown that the ability of superparamagnetic iron oxide
PDF
Album
Full Research Paper
Published 04 Jun 2014

Effect of spherical Au nanoparticles on nanofriction and wear reduction in dry and liquid environments

  • Dave Maharaj and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2012, 3, 759–772, doi:10.3762/bjnano.3.85

Graphical Abstract
  • release of this agent on contact with hydrocarbons is used as an indication of the presence of oil on recovery of the nanoparticles [10]. In contaminant removal, nanocomposites composed of collagen and superparamagnetic iron-oxide nanoparticles (SPIONs) have been investigated. The collagen selectively
PDF
Album
Full Research Paper
Published 15 Nov 2012

Magnetic nanoparticles for biomedical NMR-based diagnostics

  • Huilin Shao,
  • Tae-Jong Yoon,
  • Monty Liong,
  • Ralph Weissleder and
  • Hakho Lee

Beilstein J. Nanotechnol. 2010, 1, 142–154, doi:10.3762/bjnano.1.17

Graphical Abstract
  • ][37][38][39][40][41][42]. CLIO nanoparticles contain a superparamagnetic iron oxide core (3–5 nm monocrystalline iron oxide) composed of ferrimagnetic magnetite (Fe3O4) and/or maghemite (γ-Fe2O3). The metallic core is subsequently coated with biocompatible dextran, before being cross-linked with
PDF
Album
Review
Published 16 Dec 2010
Other Beilstein-Institut Open Science Activities