Search results

Search for "surface modification" in Full Text gives 158 result(s) in Beilstein Journal of Nanotechnology.

The effect of metal surface nanomorphology on the output performance of a TENG

  • Yiru Wang,
  • Xin Zhao,
  • Yang Liu and
  • Wenjun Zhou

Beilstein J. Nanotechnol. 2022, 13, 298–312, doi:10.3762/bjnano.13.25

Graphical Abstract
  • ], many attempts have been made to enhance the energy harvesting efficiency. There are four ways to enhance the efficiency of energy collection. These are (1) surface treatment of the contact materials, including increasing the surface roughness and physical surface modification to enhance the surface
PDF
Album
Full Research Paper
Published 15 Mar 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • bacterial accumulation in implants, surface modification is increasingly gaining attention. Dental implants have been modified with drug-releasing TiO2 nanotubes to overcome the infection caused by the presence of persistent oral pathogenic microbial biofilms [57]. Their nanometer-sized roughness and
  • and a reduced toxicity to normal cells of free drug molecules. Surface modification of the nanomaterials with polyethylene glycol (PEG) is reported to be advantageous for multiple reasons, such as inhibition of recognition by the mononuclear phagocytic system, elimination of in vitro toxicity, and
  • cervical tumors by incorporating zinc phthalocyanine (ZnPc) as photosensitizer into TiO2 nps. The result showed a higher cellular uptake of ZnPc-TiO2 and an increased PDT efficiency compared ot Zn alone [114]. Since photocatalytic absorption generally occurs at the surface, surface modification acts as the
PDF
Album
Review
Published 14 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • techniques of surface modification and additive incorporation have exhibited enhanced properties compared to traditional membranes and are even better than the as-prepared electrospun membranes. In this review, we have summarized recently developed electrospun nanohybrids fabricated by the incorporation of
PDF
Album
Review
Published 31 Jan 2022

Theranostic potential of self-luminescent branched polyethyleneimine-coated superparamagnetic iron oxide nanoparticles

  • Rouhollah Khodadust,
  • Ozlem Unal and
  • Havva Yagci Acar

Beilstein J. Nanotechnol. 2022, 13, 82–95, doi:10.3762/bjnano.13.6

Graphical Abstract
  • cytochrome c [57]. Covalent binding of Erb to the surface of SPION@bPEI may somehow switch off the intrinsic cytotoxicity by hindering the primary amine interaction with box proteins. These can be some of the possible reasons for cytotoxicity reduction of SPION@bPEI after surface modification with Erb. To
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2022

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • characteristics, such as interesting plasmonic, optical and catalytic properties, and facile surface modification with tunable size and morphology [1]. Among these properties, the ability of surface plasmon resonance (SPR) at visible to near-infrared (NIR) wavelengths is the most striking characteristic feature
  • cytotoxicity of quaternary ammonium surfactants in which cytotoxicity increased with the increase in carbon chain length of the surfactants [47]. Several reports have shown that the toxicity of CTAB-capped gold nanorods depends on nanoparticle size, shape, particle concentration, surface modification, and
PDF
Album
Review
Published 18 Aug 2021

Modification of a SERS-active Ag surface to promote adsorption of charged analytes: effect of Cu2+ ions

  • Bahdan V. Ranishenka,
  • Andrei Yu. Panarin,
  • Irina A. Chelnokova,
  • Sergei N. Terekhov,
  • Peter Mojzes and
  • Vadim V. Shmanai

Beilstein J. Nanotechnol. 2021, 12, 902–912, doi:10.3762/bjnano.12.67

Graphical Abstract
  • surface modification of Ag (polymers, lithium chloride, and multicharged metal ions) to improve the SERS signal of substrates (our preliminary results have been described in [29]). Finally, we applied the obtained results to detect oligonucleotide molecules and showed that the addition of Cu2+ ions into
  • surface due to the several orders of magnitude lower acidity constant of the introduced carboxylic groups, compared to sulfate groups. Using neutral mercaptoethanol for surface modification led to an almost complete absence of SERS spectra for both porphyrins (Figure 5, number 3). In this case, the Ag
  • the amine groups. Another explanation is the formation of zwitter-ionic structures on the NP surfaces. Thiocholine surface modification causes the complete disappearance of the CuTMpyP4 SERS signal and a significant spectrum intensity increase for CuTSPP4 (Figure 5, number 1). We explain this by
PDF
Album
Supp Info
Full Research Paper
Published 16 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • anticancer drugs [139]. They can also be targeted to specific tissues through surface modification with different ligands [169][170]. Azmin et al. reviewed MB dynamics and the physical principles behind MBs, providing a theoretical basis for the development of MB-based theranostic systems [171]. Some
PDF
Album
Review
Published 11 Aug 2021

Prediction of Co and Ru nanocluster morphology on 2D MoS2 from interaction energies

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2021, 12, 704–724, doi:10.3762/bjnano.12.56

Graphical Abstract
  • –metal interaction allows us to conclude that 2D structures should be preferred for Co on MoS2, while Ru prefers 3D structures on MoS2. However, the presence of a sulfur vacancy decreases the metal–metal interaction, indicating that with controlled surface modification 2D Ru structures could be achieved
PDF
Album
Supp Info
Full Research Paper
Published 14 Jul 2021

The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors

  • Nikola Geskovski,
  • Nadica Matevska-Geshkovska,
  • Simona Dimchevska Sazdovska,
  • Marija Glavas Dodov,
  • Kristina Mladenovska and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2021, 12, 375–401, doi:10.3762/bjnano.12.31

Graphical Abstract
  • [27]. Moreover, the authors reported that the size reduction of the liposomes produced better results. The surface modification of liposomes with an anionic amphiphile (N-(3-carboxy-1-oxopropyl)-ʟ-glutamic acid 1,5-bis(hexadecyl ester)), reported by Sou and co-workers, resulted in significant
PDF
Album
Review
Published 29 Apr 2021

Doxorubicin-loaded gold nanorods: a multifunctional chemo-photothermal nanoplatform for cancer management

  • Uzma Azeem Awan,
  • Abida Raza,
  • Shaukat Ali,
  • Rida Fatima Saeed and
  • Nosheen Akhtar

Beilstein J. Nanotechnol. 2021, 12, 295–303, doi:10.3762/bjnano.12.24

Graphical Abstract
  • ) to negative after PSS modification, which also confirmed the successful surface modification as described in previous reports [28]. Absorption spectra confirmed the successful loading of DOX on the PSS-coated GNRs (Figure 1c). The polyelectrolyte coating allowed the GNRs to easily interact with the
  • cancer cells. The nanomaterial complex described here will have the capacity for cost-effective upscaling due to ease of synthesis and surface modification, and the tunable drug loading ability. Chemo-photothermal treatment based on nanocomplex systems is an efficient approach for reducing the high dose
PDF
Album
Full Research Paper
Published 31 Mar 2021

Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization

  • Barbora Svitkova,
  • Vlasta Zavisova,
  • Veronika Nemethova,
  • Martina Koneracka,
  • Miroslava Kretova,
  • Filip Razga,
  • Monika Ursinyova and
  • Alena Gabelova

Beilstein J. Nanotechnol. 2021, 12, 270–281, doi:10.3762/bjnano.12.22

Graphical Abstract
  • , and magnetism) differing only in surface modification, BSA-SO-MNPs and PEG-SO-MNPs, have been synthesized to study the effect of surface modification on cellular internalization. Human lung A549 cells were selected as a model system to investigate the uptake of surface-modified MNPs. These cells are a
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2021

Paper-based triboelectric nanogenerators and their applications: a review

  • Jing Han,
  • Nuo Xu,
  • Yuchen Liang,
  • Mei Ding,
  • Junyi Zhai,
  • Qijun Sun and
  • Zhong Lin Wang

Beilstein J. Nanotechnol. 2021, 12, 151–171, doi:10.3762/bjnano.12.12

Graphical Abstract
  • several typical examples in which P-TENGs are used. This paper starts with an overview of TENGs and the corresponding working mechanism of four basic working modes based on charge transfer and on the electron-cloud potential-well model. Regarding surface modification and fabrication methods involving
  • introduce electronegative or electropositive functional groups) and micro-/nanostructure engineering (to introduce charge-trapping points to facilitate charge transfer) are effective ways to modulate the electronegativity. The surface modification of the friction materials is performed to implement chemical
PDF
Album
Review
Published 01 Feb 2021

Imaging and milling resolution of light ion beams from helium ion microscopy and FIBs driven by liquid metal alloy ion sources

  • Nico Klingner,
  • Gregor Hlawacek,
  • Paul Mazarov,
  • Wolfgang Pilz,
  • Fabian Meyer and
  • Lothar Bischoff

Beilstein J. Nanotechnol. 2020, 11, 1742–1749, doi:10.3762/bjnano.11.156

Graphical Abstract
  • In modern nanotechnology, focused ion beam (FIB) techniques are well-established for nanoscale structuring, local surface modification, doping, prototyping, as well as for ion beam analysis. One of the main components of such a FIB system is the ion source providing the needed ion species [1
PDF
Album
Full Research Paper
Published 18 Nov 2020

PEG/PEI-functionalized single-walled carbon nanotubes as delivery carriers for doxorubicin: synthesis, characterization, and in vitro evaluation

  • Shuoye Yang,
  • Zhenwei Wang,
  • Yahong Ping,
  • Yuying Miao,
  • Yongmei Xiao,
  • Lingbo Qu,
  • Lu Zhang,
  • Yuansen Hu and
  • Jinshui Wang

Beilstein J. Nanotechnol. 2020, 11, 1728–1741, doi:10.3762/bjnano.11.155

Graphical Abstract
  • from PEI make the CNTs much more soluble in aqueous solution and thus improve their biocompatibility [37]. Furthermore, surface modification with PEGylated agents or positively charged groups can protect the nanocarriers by providing a steric barrier from being recognized and captured by the
  • diffraction patterns of the CNTs remain the same after conjugation with PEG and PEI, which indicate that the surface modification will not change the atomic structure of CNTs. The morphology of the different nanocarriers was observed using AFM after deposition on a mica substrate. The raw SWCNTs exhibit large
PDF
Album
Full Research Paper
Published 13 Nov 2020

Walking energy harvesting and self-powered tracking system based on triboelectric nanogenerators

  • Mingliang Yao,
  • Guangzhong Xie,
  • Qichen Gong and
  • Yuanjie Su

Beilstein J. Nanotechnol. 2020, 11, 1590–1595, doi:10.3762/bjnano.11.141

Graphical Abstract
  • transportation control, and for environmental monitoring. Experimental Surface modification of a PTFE film The surface modification of a PTFE film was performed in a similar manner as described previously [34]. Deep reactive ion etching was employed to construct PTFE nanowires aligned on the surface. Isopropyl
PDF
Album
Full Research Paper
Published 20 Oct 2020

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • -based NPs have demonstrated antimicrobial activity over the last years. Several metal and metal oxide NPs, such as silver, copper, zinc oxide, titanium oxide, copper oxide, and nickel oxide NPs, are known to display antimicrobial activity [15][16][17] that depends on their composition, surface
  • modification, intrinsic properties and the type of targeted microorganism [18]. A special category of metallic NPs is superparamagnetic iron-oxide nanoparticles (SPIONs) (e.g., magnetite (Fe3O4) and maghemite (γ-Fe2O3) NPs) whose antimicrobial activity increases upon the application of an external magnetic
PDF
Album
Review
Published 25 Sep 2020

Growth of a self-assembled monolayer decoupled from the substrate: nucleation on-command using buffer layers

  • Robby Reynaerts,
  • Kunal S. Mali and
  • Steven De Feyter

Beilstein J. Nanotechnol. 2020, 11, 1291–1302, doi:10.3762/bjnano.11.113

Graphical Abstract
  • probe methods, especially scanning tunneling microscopy (STM) [2]. While the formation of structurally diverse crystalline monolayers provides exciting opportunities for surface modification and also for investigating crystal engineering in 2D [5], predicting 2D polymorphism is often nontrivial. The
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2020

Ultrasensitive detection of cadmium ions using a microcantilever-based piezoresistive sensor for groundwater

  • Dinesh Rotake,
  • Anand Darji and
  • Nitin Kale

Beilstein J. Nanotechnol. 2020, 11, 1242–1253, doi:10.3762/bjnano.11.108

Graphical Abstract
  • graphene oxide (RGO)-based sensor and a microfluidic platform fabricated by [25][26][27] can be used with some surface modification for HMIs, but it is mostly capable of detecting in the micromolar range. A polymer-based microcantilever using an encapsulated piezoresistor has been proposed by Kale et al
  • structure with thickness, FESEM image, PCB, and the experimental platform is shown in Figure 1. For using the microcantilever device for selectively detecting Cd(II) a surface modification is required. The surface modification of the sensor is basically a selective thiol coating on top of a gold surface
PDF
Album
Full Research Paper
Published 18 Aug 2020

Quantitative determination of the interaction potential between two surfaces using frequency-modulated atomic force microscopy

  • Nicholas Chan,
  • Carrie Lin,
  • Tevis Jacobs,
  • Robert W. Carpick and
  • Philip Egberts

Beilstein J. Nanotechnol. 2020, 11, 729–739, doi:10.3762/bjnano.11.60

Graphical Abstract
  • , require coatings to prevent sticking of the mirrors due to relatively high adhesive forces [3]. Therefore, there has been considerable research into surface modification (e.g., lubricants [7][8][9], surface functionalization [10][11], and surface texturing [12][13][14]) in order to mitigate the impact of
  • interactions necessitates characterization methods with angstrom-level precision. Therefore, techniques such as atomic force microscopy (AFM) are often used to evaluate the performance of these surface modification approaches. The interpretation of lubrication and surface modification behavior via AFM
PDF
Album
Full Research Paper
Published 06 May 2020

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
  • release of therapeutic agents upon minor variations in the environmental characteristics, surface modification and suppression of inter-chain interaction to the degradation/rearrangement of LbL films under the action of physical factors [19][20]. In spite of the fact that weak PE systems can also offer
  • microparticles (10–200 µm) fabricated via stop flow lithography have emerged as useful templates to form custom-shaped and flexible microcapsules of poly-ʟ-lysine (PLL) [36]. The shell was formed by diffusion of PLL into an oppositely charged hydrogel matrix, enabling an easy surface modification that can be
PDF
Album
Review
Published 27 Mar 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
PDF
Album
Review
Published 15 Jan 2020

Label-free highly sensitive probe detection with novel hierarchical SERS substrates fabricated by nanoindentation and chemical reaction methods

  • Jingran Zhang,
  • Tianqi Jia,
  • Yongda Yan,
  • Li Wang,
  • Peng Miao,
  • Yimin Han,
  • Xinming Zhang,
  • Guangfeng Shi,
  • Yanquan Geng,
  • Zhankun Weng,
  • Daniel Laipple and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2019, 10, 2483–2496, doi:10.3762/bjnano.10.239

Graphical Abstract
  • ) surface, and surface cleaning was carried out further using deionized water to remove any residual AgNO3 reagent and copper nitrate production. A stream of nitrogen was then used to dry the hierarchical substrate as shown in Figure 13. Hydrogen ions play an important role in the surface modification
PDF
Album
Full Research Paper
Published 13 Dec 2019

pH-Controlled fluorescence switching in water-dispersed polymer brushes grafted to modified boron nitride nanotubes for cellular imaging

  • Saban Kalay,
  • Yurij Stetsyshyn,
  • Volodymyr Donchak,
  • Khrystyna Harhay,
  • Ostap Lishchynskyi,
  • Halyna Ohar,
  • Yuriy Panchenko,
  • Stanislav Voronov and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2019, 10, 2428–2439, doi:10.3762/bjnano.10.233

Graphical Abstract
  • (DU145) and are suitable for further evaluation in cellular imaging applications. Keywords: boron nitride nanotubes; cellular imaging; fluorescence; pH switching; polymer brushes; surface modification; Introduction In recent years, considerable effort has been devoted to the development of hybrid
  • fluorescent probes for a number of bio-responsive applications, ranging from drug delivery to genomics [29][30][31]. Similar to other nanotubes, the pristine BNNTs were not fluorescent, and a fluorophore (e.g., organic molecule or quantum dot) is added via surface modification to make them fluorescent [29][30
  • ][31][32][33][34]. In [35], the fluorescent CdSe quantum dots were attached to BNNT surfaces, and in [36] the halloysite nanotubes were modified with carbon dots and used for cellular imaging. Another approach is surface modification with grafted polymers bearing organic fluorophores. One of the most
PDF
Album
Supp Info
Full Research Paper
Published 10 Dec 2019

Synthesis of highly active ETS-10-based titanosilicate for heterogeneously catalyzed transesterification of triglycerides

  • Muhammad A. Zaheer,
  • David Poppitz,
  • Khavar Feyzullayeva,
  • Marianne Wenzel,
  • Jörg Matysik,
  • Radomir Ljupkovic,
  • Aleksandra Zarubica,
  • Alexander A. Karavaev,
  • Andreas Pöppl,
  • Roger Gläser and
  • Muslim Dvoyashkin

Beilstein J. Nanotechnol. 2019, 10, 2039–2061, doi:10.3762/bjnano.10.200

Graphical Abstract
  • OH groups on the surface of the created mesopores originating from the partial removal of TiO6 octahedra and SiO4 tetrahedra from the framework and subsequent protonation of the oxygen radicals. The quantitative information of the surface modification was obtained from the 29Si MAS NMR experiments
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2019

Gold-coated plant virus as computed tomography imaging contrast agent

  • Alaa A. A. Aljabali,
  • Mazhar S. Al Zoubi,
  • Khalid M. Al-Batanyeh,
  • Ali Al-Radaideh,
  • Mohammad A. Obeid,
  • Abeer Al Sharabi,
  • Walhan Alshaer,
  • Bayan AbuFares,
  • Tasnim Al-Zanati,
  • Murtaza M. Tambuwala,
  • Naveed Akbar and
  • David J. Evans

Beilstein J. Nanotechnol. 2019, 10, 1983–1993, doi:10.3762/bjnano.10.195

Graphical Abstract
  • 28 nm and a surface charge of ca. 13 mV [38]. Surface functionalization and UV–visible studies One of the objectives of the present work was the development of a smart cell-specific contrast agent based on the surface modification of Au-CPMV with specific antibodies to target desired cells
  • functionalization of Au-CPMV. The localized surface plasmon resonance (LSPR) spectrum shifted by almost 4 nm (Figure 3A). This shift of the extinction maximum from 534 nm to 538 nm is a result of an increase in the local refractive index at the Au-CPMV surface as reported in the literature following surface
  • modification with proteins [40] and indicates that the surface of the Au-CPMV particles is “smooth”. The shift would be greater if the surface had an uneven shape. In addition, the 4 nm red-shift of the LSPR peak suggests that the modification of the Au-CPMV surface with antibodies has been successful. This
PDF
Album
Full Research Paper
Published 07 Oct 2019
Other Beilstein-Institut Open Science Activities