Search results

Search for "surface properties" in Full Text gives 173 result(s) in Beilstein Journal of Nanotechnology.

Quantum size effects in TiO2 thin films grown by atomic layer deposition

  • Massimo Tallarida,
  • Chittaranjan Das and
  • Dieter Schmeisser

Beilstein J. Nanotechnol. 2014, 5, 77–82, doi:10.3762/bjnano.5.7

Graphical Abstract
  • purity [4]. The growth of TiO2 by ALD is a well-studied process and has been recently reviewed [5]. Charge carrier transport and separation, which strongly depend on interface and surface properties [6][7], are among the most important aspects of energy conversion processes. Therefore the further
PDF
Album
Full Research Paper
Published 22 Jan 2014

Dynamic nanoindentation by instrumented nanoindentation and force microscopy: a comparative review

  • Sidney R. Cohen and
  • Estelle Kalfon-Cohen

Beilstein J. Nanotechnol. 2013, 4, 815–833, doi:10.3762/bjnano.4.93

Graphical Abstract
PDF
Album
Review
Published 29 Nov 2013

Multiple regimes of operation in bimodal AFM: understanding the energy of cantilever eigenmodes

  • Daniel Kiracofe,
  • Arvind Raman and
  • Dalia Yablon

Beilstein J. Nanotechnol. 2013, 4, 385–393, doi:10.3762/bjnano.4.45

Graphical Abstract
  • . Keywords: atomic force microscopy; bimodal AFM; cantilever eigenmodes; polymer characterization; Introduction Atomic force microscopy (AFM) has arisen as one of the key tools for characterization of morphology and surface properties of materials (e.g., polymer blends and composites) at the micro
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2013

Polynomial force approximations and multifrequency atomic force microscopy

  • Daniel Platz,
  • Daniel Forchheimer,
  • Erik A. Tholén and
  • David B. Haviland

Beilstein J. Nanotechnol. 2013, 4, 352–360, doi:10.3762/bjnano.4.41

Graphical Abstract
  • measurements [5][6][7][8][9][10] is a strong driving force for the development of atomic force microscopy (AFM). The advent of multifrequency AFM resulted in a variety of new measurement techniques enabling enhanced contrast and spatial mapping of surface properties on a wide range of samples [11]. However
  • reconstruction allows for the extraction of properties such as surface adhesion, sample stiffness or interaction geometry. We demonstrate this extraction of surface properties with high-resolution stiffness maps on a blend of polystyrene (PS) and poly(methyl methacrylate) (PMMA). Polynomial reconstruction, and
  • reconstruct sharp features in the force curve, such as the force minimum. Surface parameter mapping Material scientists are often interested in determining surface properties with high spatial resolution. ImAFM measurements can be performed while scanning a sample surface [24][25], enabling polynomial force
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2013

Selective surface modification of lithographic silicon oxide nanostructures by organofunctional silanes

  • Thomas Baumgärtel,
  • Christian von Borczyskowski and
  • Harald Graaf

Beilstein J. Nanotechnol. 2013, 4, 218–226, doi:10.3762/bjnano.4.22

Graphical Abstract
  • amplitude–phase–distance curves [40]. From such experiments, the dissipated energy of the AFM tip oscillation can be calculated, which depends on the local elastic and therefore structural surface properties of the substrate. The surface coverage of the relatively rigid silicon oxide with “softer” organic
PDF
Album
Full Research Paper
Published 25 Mar 2013

Photoresponse from single upright-standing ZnO nanorods explored by photoconductive AFM

  • Igor Beinik,
  • Markus Kratzer,
  • Astrid Wachauer,
  • Lin Wang,
  • Yuri P. Piryatinski,
  • Gerhard Brauer,
  • Xin Yi Chen,
  • Yuk Fan Hsu,
  • Aleksandra B. Djurišić and
  • Christian Teichert

Beilstein J. Nanotechnol. 2013, 4, 208–217, doi:10.3762/bjnano.4.21

Graphical Abstract
  • difference between the 0.22 eV found here and the 0.54 eV can be simply explained by a higher junction temperature induced by the higher current. On the one hand, this “heating” affects the surface properties due to increased desorption, and on the other hand it might lead to a local annealing of the nanorod
PDF
Album
Full Research Paper
Published 21 Mar 2013

Functionalization of vertically aligned carbon nanotubes

  • Eloise Van Hooijdonk,
  • Carla Bittencourt,
  • Rony Snyders and
  • Jean-François Colomer

Beilstein J. Nanotechnol. 2013, 4, 129–152, doi:10.3762/bjnano.4.14

Graphical Abstract
  • applications is the tuning of the CNT surface properties. In this context, functionalization (i.e., the grafting of chemical groups (molecules or particles) on the surface of the nanomaterial) has been reported to give excellent results, with the drawback that it negatively impacts on the alignment of the VA
PDF
Album
Review
Published 22 Feb 2013

Catalytic activity of nanostructured Au: Scale effects versus bimetallic/bifunctional effects in low-temperature CO oxidation on nanoporous Au

  • Lu-Cun Wang,
  • Yi Zhong,
  • Haijun Jin,
  • Daniel Widmann,
  • Jörg Weissmüller and
  • R. Jürgen Behm

Beilstein J. Nanotechnol. 2013, 4, 111–128, doi:10.3762/bjnano.4.13

Graphical Abstract
  • are discussed. Keywords: AuAg alloy; AuCu alloy; CO oxidation; dynamic studies; kinetics; nanoporous Au (NPG) catalyst; oxygen storage capacity (OSC); temporal analysis of products (TAP); Introduction Porous metallic materials with well-controlled morphologies and surface properties have attracted
PDF
Album
Supp Info
Full Research Paper
Published 19 Feb 2013

Friction and durability of virgin and damaged skin with and without skin cream treatment using atomic force microscopy

  • Bharat Bhushan,
  • Si Chen and
  • Shirong Ge

Beilstein J. Nanotechnol. 2012, 3, 731–746, doi:10.3762/bjnano.3.83

Graphical Abstract
  • /bjnano.3.83 Abstract Skin can be damaged by the environment easily. Skin cream is an effective and rapid way to moisten the skin by changing the skin surface properties. Rat skin and pig skin are common animal models for studies and were used as skin samples in this study. The nano- and macroscale
  • epidermis of pig skin are thicker than those of rat skin. The pig skin has fewer hair follicles than rat skin. Pig skin has been reported to be the most suitable model for human skin because of its similar surface properties, such as body mass and skin-to-body surface-area ratio, sparse hair, thick
  • loss of the lipid layer. After the application of skin cream, the skin surface properties change, and the skin is moistened and softened by the skin cream, which leads to a greater ductility and a larger real area of contact resulting in stronger adhesion, such that the coefficient of friction of cream
PDF
Album
Full Research Paper
Published 08 Nov 2012

Polymer blend lithography: A versatile method to fabricate nanopatterned self-assembled monolayers

  • Cheng Huang,
  • Markus Moosmann,
  • Jiehong Jin,
  • Tobias Heiler,
  • Stefan Walheim and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2012, 3, 620–628, doi:10.3762/bjnano.3.71

Graphical Abstract
  • scanning force microscopy (SFM) techniques allow not only the imaging of the topography of surfaces but also the spatially resolved study of surface properties, such as the electrical, elastic, tribological and wear properties [11][12][13][14][15][16][17][18][19][20][21][22][23]. At the same time, scanning
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2012

Mapping mechanical properties of organic thin films by force-modulation microscopy in aqueous media

  • Jianming Zhang,
  • Zehra Parlak,
  • Carleen M. Bowers,
  • Terrence Oas and
  • Stefan Zauscher

Beilstein J. Nanotechnol. 2012, 3, 464–474, doi:10.3762/bjnano.3.53

Graphical Abstract
  • photoresist stripping), processed in parallel, but without thiol deposition. The height, lateral force, and amplitude and phase images do not show any difference in the morphology or the substrate mechanical properties, suggesting that the photoresist developing and stripping steps did not change the surface
  • properties. Conclusion We showed that force-modulation microscopy (FMM) can be used to image organic thin films in aqueous environments with high spatial resolution and sensitivity to conformational details that affect the contact mechanics. FMM generated high-contrast amplitude and phase images of proteins
PDF
Album
Supp Info
Letter
Published 26 Jun 2012

Colloidal lithography for fabricating patterned polymer-brush microstructures

  • Tao Chen,
  • Debby P. Chang,
  • Rainer Jordan and
  • Stefan Zauscher

Beilstein J. Nanotechnol. 2012, 3, 397–403, doi:10.3762/bjnano.3.46

Graphical Abstract
  • brushes [13] are of increasing importance especially for array-based platforms because of their ability to modify surface properties and their potential applications in surface-based technologies, such as protein-resistant coatings, switchable sensors, substrates for cell-growth control, and for the
PDF
Album
Full Research Paper
Published 15 May 2012

Reduced electron recombination of dye-sensitized solar cells based on TiO2 spheres consisting of ultrathin nanosheets with [001] facet exposed

  • Hongxia Wang,
  • Meinan Liu,
  • Cheng Yan and
  • John Bell

Beilstein J. Nanotechnol. 2012, 3, 378–387, doi:10.3762/bjnano.3.44

Graphical Abstract
  • current and open-circuit voltage of the DSC. The surface properties of the TiO2 material play an important role in both processes. The process of electron injection in DSCs is controlled by the energy difference between the conduction band of the TiO2 material and the LUMO level of the dye, and the
  • applications such as water splitting and lithium-ion batteries [6][7][8]. Further investigation shows that the [001] surface is more beneficial to the photooxidization process through the O− centers compared to the [101] surface, which contains more Ti3+ centers [9]. The different surface properties of the
  • sintered TiO2 film (not shown) indicates that the film has the same surface properties as the spheres. J–V characteristics of the DSCs The J–V characteristics of the DSCs with the TiO2 film made from paste A, which contained 13 wt % TiO2 spheres with and without TiCl4 post-treatment, is shown in Figure 2a
PDF
Album
Full Research Paper
Published 07 May 2012

Forming nanoparticles of water-soluble ionic molecules and embedding them into polymer and glass substrates

  • Stella Kiel,
  • Olga Grinberg,
  • Nina Perkas,
  • Jerome Charmet,
  • Herbert Kepner and
  • Aharon Gedanken

Beilstein J. Nanotechnol. 2012, 3, 267–276, doi:10.3762/bjnano.3.30

Graphical Abstract
  • substrates by a one-step, ultrasound-assisted procedure. The results presented here compare the experimental data collected for the three salts. It is important to note that the applied technique is general and the obtained results appeared to be similar to all studied inorganic salts. Surface properties and
PDF
Album
Full Research Paper
Published 21 Mar 2012

A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope

  • Manfred Lange,
  • Dennis van Vörden and
  • Rolf Möller

Beilstein J. Nanotechnol. 2012, 3, 207–212, doi:10.3762/bjnano.3.23

Graphical Abstract
  • about 0.22 eV/cycle. Keywords: atomic force microscopy; energy dissipation; force spectroscopy; hysteresis loop; PTCDA/Ag/Si(111) √3 × √3; Introduction Noncontact atomic force microscopy (NC-AFM) is a powerful tool for the study of surface properties. The invention of the frequency-modulation mode (FM
PDF
Album
Full Research Paper
Published 08 Mar 2012

Noncontact atomic force microscopy study of the spinel MgAl2O4(111) surface

  • Morten K. Rasmussen,
  • Kristoffer Meinander,
  • Flemming Besenbacher and
  • Jeppe V. Lauritsen

Beilstein J. Nanotechnol. 2012, 3, 192–197, doi:10.3762/bjnano.3.21

Graphical Abstract
  • ); polar surfaces; reconstructions; spinel; Introduction While the application of metal oxides in, e.g., catalysis, gas sensors, fuel cells, high-k dielectrics and corrosion protection has seen a very strong development, fundamental research on the surface properties of metal oxides has been a topic of
PDF
Album
Full Research Paper
Published 06 Mar 2012

Substrate-mediated effects in photothermal patterning of alkanethiol self-assembled monolayers with microfocused continuous-wave lasers

  • Anja Schröter,
  • Mark Kalus and
  • Nils Hartmann

Beilstein J. Nanotechnol. 2012, 3, 65–74, doi:10.3762/bjnano.3.8

Graphical Abstract
  • -assembled monolayers (SAMs) have developed into a particularly versatile means to tailor the surface properties of technologically important materials, such as gold, silicon and glass [1][2][3]. Because of the self-limiting growth mechanism, well-defined coating with a layer of monomolecular thickness is
PDF
Album
Full Research Paper
Published 26 Jan 2012

Self-assembly at solid surfaces

  • Sidney R. Cohen and
  • Jacob Sagiv

Beilstein J. Nanotechnol. 2011, 2, 824–825, doi:10.3762/bjnano.2.91

Graphical Abstract
  • have been foreseen at the time. These avenues exploit the ability to finely tune a wide variety of surface properties, for many diverse potential applications, through the combination of molecular self-assembly, chemical design, and postassembly surface manipulation by various chemical and physical
PDF
Editorial
Published 20 Dec 2011

Tip-enhanced Raman spectroscopic imaging of patterned thiol monolayers

  • Johannes Stadler,
  • Thomas Schmid,
  • Lothar Opilik,
  • Phillip Kuhn,
  • Petra S. Dittrich and
  • Renato Zenobi

Beilstein J. Nanotechnol. 2011, 2, 509–515, doi:10.3762/bjnano.2.55

Graphical Abstract
  • microcontact printed 2-PySH on a gold surface. (b), (d) Corresponding height images showing slight elevation of the thiol layer, slightly masked by the system noise, suggesting a height between 0.5–1.0 nm. The phase image clearly illustrates the different surface properties of the printed thiol in comparison
  • thiols, with very similar properties, distributed on the surface in a well-defined pattern. The AFM (a) phase and (b) topography images in Figure 3 demonstrate that it is not possible to differentiate the two isomers on the surface based on these AFM experiments alone, due to their similar surface
  • properties (height, friction). One possible but very tedious way to distinguish the two thiols would have been to use high resolution STM (which is usually size limited to the nanometer range) to search for typical molecular patterns in the SAM structure. However, both thiols can assemble in several
PDF
Album
Full Research Paper
Published 30 Aug 2011

Recrystallization of tubules from natural lotus (Nelumbo nucifera) wax on a Au(111) surface

  • Sujit Kumar Dora and
  • Klaus Wandelt

Beilstein J. Nanotechnol. 2011, 2, 261–267, doi:10.3762/bjnano.2.30

Graphical Abstract
  • . In addition, a comparison of tubule growth on Au(111) and HOPG is given in order to obtain a better understanding of the various surface properties affecting the growth kinetics and structure of these tubules. The Au(111) surface was chosen, because gold is regarded as the most chemically inert metal
  • similar surface properties. Results Figure 1 shows a series of AFM images of wax growth on the Au(111) surface. A video sequence of all the images taken during scanning, which demonstrates the representative wax crystallization process on Au(111), is available in Supporting Information File 1. As for
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2011

Review of "Contact Mechanics and Friction: Physical Principles and Applications" by Valentin L. Popov

  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2011, 2, 57–58, doi:10.3762/bjnano.2.7

Graphical Abstract
  • contact problem in biology see [4]). Biological and technical systems have many common features. First, the mechanical interaction occurs on identical length and force scales [5]. In both types of systems, surface properties – for example wettability, microstructure or surface chemistry – have a strong
PDF
Book Report
Published 25 Jan 2011

Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors

  • Alexander Weddemann,
  • Inga Ennen,
  • Anna Regtmeier,
  • Camelia Albon,
  • Annalena Wolff,
  • Katrin Eckstädt,
  • Nadine Mill,
  • Michael K.-H. Peter,
  • Jochen Mattay,
  • Carolin Plattner,
  • Norbert Sewald and
  • Andreas Hütten

Beilstein J. Nanotechnol. 2010, 1, 75–93, doi:10.3762/bjnano.1.10

Graphical Abstract
  • order [49]. Additionally, friction and shear forces can arise between the particles on the one hand and between particles and substrate on the other hand [57][58]. In the latter case, the forces strongly depend on the surface properties such as structure and roughness. Thus, the choice of substrate is
PDF
Album
Review
Published 22 Nov 2010

Sensing surface PEGylation with microcantilevers

  • Natalija Backmann,
  • Natascha Kappeler,
  • Thomas Braun,
  • François Huber,
  • Hans-Peter Lang,
  • Christoph Gerber and
  • Roderick Y. H. Lim

Beilstein J. Nanotechnol. 2010, 1, 3–13, doi:10.3762/bjnano.1.2

Graphical Abstract
  • and Nanoanalytics, Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland Biozentrum and the Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland 10.3762/bjnano.1.2 Abstract Polymers are often used to modify surface properties to control
  • interfacial processes. Their sensitivity to solvent conditions and ability to undergo conformational transitions makes polymers attractive in tailoring surface properties with specific functionalities leading to applications in diverse areas ranging from tribology to colloidal stability and medicine. A key
PDF
Album
Video
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities