Search results

Search for "surface topography" in Full Text gives 123 result(s) in Beilstein Journal of Nanotechnology.

Characterization of spherical domains at the polystyrene thin film–water interface

  • Khurshid Ahmad,
  • Xuezeng Zhao,
  • Yunlu Pan and
  • Danish Hussain

Beilstein J. Nanotechnol. 2016, 7, 581–590, doi:10.3762/bjnano.7.51

Graphical Abstract
  • also studied. Moreover, changes in surface topography, before and after the contact with water, have also been discussed. Experimental Materials and equipment The following materials and equipment were used in this study: deionized water purified with a Milli-Q A10 system, silicon dioxide (Lijing, LLC
  • nitride cantilevers with a nominal tip radius of 20 nm and nominal stiffness of 0.05 N/m. The resonance frequency of the cantilever immersed in DI water was 35.0 kHz. Furthermore, an average scan rate of 1 Hz was used to image the surface topography and the micro/nano spherical domains. Moreover, the
PDF
Album
Supp Info
Full Research Paper
Published 20 Apr 2016

Self-organization of gold nanoparticles on silanated surfaces

  • Htet H. Kyaw,
  • Salim H. Al-Harthi,
  • Azzouz Sellai and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2015, 6, 2345–2353, doi:10.3762/bjnano.6.242

Graphical Abstract
  • on APTES-functionalized glass substrate. Surface topography of AuNPs deposited on glass surface was characterized by AFM which revealed the different coverage of AuNPs on self-assembled APTES glass substrates. Energy shift in VBM was also observed on APTES surface as well as AuNPs deposited on APTES
PDF
Album
Full Research Paper
Published 10 Dec 2015

Electrochemical coating of dental implants with anodic porous titania for enhanced osteointegration

  • Amirreza Shayganpour,
  • Alberto Rebaudi,
  • Pierpaolo Cortella,
  • Alberto Diaspro and
  • Marco Salerno

Beilstein J. Nanotechnol. 2015, 6, 2183–2192, doi:10.3762/bjnano.6.224

Graphical Abstract
  • with most metals, Ti in wet or even ambient air environment develops a thin layer of native oxide, namely TiO2 (titania). While it is generally recognized that surface topography is a major factor for osteointegration of all implants [4], the lower surface energy of titania as compared to that of
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2015

Transformations of PTCDA structures on rutile TiO2 induced by thermal annealing and intermolecular forces

  • Szymon Godlewski,
  • Jakub S. Prauzner-Bechcicki,
  • Thilo Glatzel,
  • Ernst Meyer and
  • Marek Szymoński

Beilstein J. Nanotechnol. 2015, 6, 1498–1507, doi:10.3762/bjnano.6.155

Graphical Abstract
  • located in between. The overall STM appearance is much different from the surface topography. Additional bright spots recorded within dark oxygen rows are attributed to oxygen vacancies (fainter spots) or single and double surface hydroxy groups (brighter spots). The oxygen vacancies are created during
PDF
Album
Full Research Paper
Published 10 Jul 2015

Atomic force microscopy as analytical tool to study physico-mechanical properties of intestinal cells

  • Christa Schimpel,
  • Oliver Werzer,
  • Eleonore Fröhlich,
  • Gerd Leitinger,
  • Markus Absenger-Novak,
  • Birgit Teubl,
  • Andreas Zimmer and
  • Eva Roblegg

Beilstein J. Nanotechnol. 2015, 6, 1457–1466, doi:10.3762/bjnano.6.151

Graphical Abstract
  • ., high features on the sample cause the cantilever to deflect more) hence, a map of surface topography can be generated [21][22][24]. Moreover, quantitative analysis of the cell elasticity is possible by analyzing force-distance curves via monitoring the response of a cantilever once the tip is pushed
  • surface morphologies, mechanical properties and cytoskeleton organizations, enterocytes (Caco-2 cells) and M cells were studied in an in vitro co-culture model [28]. For this, enterocytes were cultured with Raji B cells to trigger M cell formation. AFM was used as a tool to study surface topography
PDF
Album
Full Research Paper
Published 06 Jul 2015

Tattoo ink nanoparticles in skin tissue and fibroblasts

  • Colin A. Grant,
  • Peter C. Twigg,
  • Richard Baker and
  • Desmond J. Tobin

Beilstein J. Nanotechnol. 2015, 6, 1183–1191, doi:10.3762/bjnano.6.120

Graphical Abstract
  • shows a typical AFM height and corresponding amplitude image (Figure 2c) of a region in the upper dermis that contains tattoo ink particles. These AFM images clearly show the dense collagen fibril network with agglomerates of tattoo ink particles. The surface topography of the dermis is quite undulating
PDF
Album
Full Research Paper
Published 20 May 2015

Probing fibronectin–antibody interactions using AFM force spectroscopy and lateral force microscopy

  • Andrzej J. Kulik,
  • Małgorzata Lekka,
  • Kyumin Lee,
  • Grazyna Pyka-Fościak and
  • Wieslaw Nowak

Beilstein J. Nanotechnol. 2015, 6, 1164–1175, doi:10.3762/bjnano.6.118

Graphical Abstract
  • , giving a ≈19% accuracy. This is also a measure of the reproducibility (33 cantilevers were calibrated in this manner). Surface topography To verify whether the functionalization of a mica surface gave an expected layer of fibronectin molecules, the surface topography was recorded using a bare (non
  • monomer [22][32]. The knowledge of the surface topography of the FN molecules deposited on a mica surface enables verification of the quality of protein deposition by direct estimation of single molecule dimensions. Depending on the experimental conditions, fibronectin can be visible either in an
  • cantilevers were immediately used in the measurements. Atomic force microscope All measurements were carried out using commercially available devices (PSIA XE100 and XE120, Park Systems, Korea) equipped with a “liquid cell” setup, in 10 mM PBS buffer. The surface topography of a fibronectin-coated mica
PDF
Album
Full Research Paper
Published 15 May 2015

High sensitivity and high resolution element 3D analysis by a combined SIMS–SPM instrument

  • Yves Fleming and
  • Tom Wirtz

Beilstein J. Nanotechnol. 2015, 6, 1091–1099, doi:10.3762/bjnano.6.110

Graphical Abstract
  • reconstructions do not consider the sample surface topography, because these protocols and the applied software assume a flat sample surface as well as a cube-like analysed volume [6]. In reality, samples exhibit a surface roughness, which is also changed during the ion bombardment, because parameters such as
  • image, the combined 3D SIMS–AFM image of the PS/PVP sample and a linescan presenting the local sample surface topography of PVP as well as the corresponding CN− secondary ion signal. Because PVP contains nitrogen (in contrast to PS) its spatial distribution can be easily imaged in SIMS by tracking the
  • created due to differential sputtering, are captured with an apparent pixel position outside the γ′ precipitate phase. This is a consequence of significant field inhomogeneities as a result of distortion of the local electric field arising from the surface topography. As already stated in [20], both the
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2015

Mapping of elasticity and damping in an α + β titanium alloy through atomic force acoustic microscopy

  • M. Kalyan Phani,
  • Anish Kumar,
  • T. Jayakumar,
  • Walter Arnold and
  • Konrad Samwer

Beilstein J. Nanotechnol. 2015, 6, 767–776, doi:10.3762/bjnano.6.79

Graphical Abstract
  • , Russia was used in the study. A stiff cantilever with a spring constant, kc, of about 30 N/m and the first free resonance frequency f0 of about 171 kHz was used in the study. The surface topography of the specimens was obtained in tapping mode to select an area with sufficient flatness for acquiring the
PDF
Album
Full Research Paper
Published 18 Mar 2015

In situ observation of biotite (001) surface dissolution at pH 1 and 9.5 by advanced optical microscopy

  • Chiara Cappelli,
  • Daniel Lamarca-Irisarri,
  • Jordi Camas,
  • F. Javier Huertas and
  • Alexander E. S. Van Driessche

Beilstein J. Nanotechnol. 2015, 6, 665–673, doi:10.3762/bjnano.6.67

Graphical Abstract
  • integration of a micro-Raman spectrometer to the LCM-DIM setup to provide simultaneous acquirement of the surface topography and chemistry during mineral (phyllosilicate) weathering. Experimental In situ flow-through experiments Changes of the biotite (001) cleavage surface topography were monitored in situ
PDF
Album
Full Research Paper
Published 05 Mar 2015

Self-assembled anchor layers/polysaccharide coatings on titanium surfaces: a study of functionalization and stability

  • Ognen Pop-Georgievski,
  • Dana Kubies,
  • Josef Zemek,
  • Neda Neykova,
  • Roman Demianchuk,
  • Eliška Mázl Chánová,
  • Miroslav Šlouf,
  • Milan Houska and
  • František Rypáček

Beilstein J. Nanotechnol. 2015, 6, 617–631, doi:10.3762/bjnano.6.63

Graphical Abstract
  • for the APTES siloxane and of 38 nm for PDA anchor layers. While such a pronounced surface topography is considered to be an inherent characteristic of the PDA films [34][53], the presence of such surface objects on APTES layers is rarely discussed. However, even in the case when a APTES SAM was
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2015

Oxygen-plasma-modified biomimetic nanofibrous scaffolds for enhanced compatibility of cardiovascular implants

  • Anna Maria Pappa,
  • Varvara Karagkiozaki,
  • Silke Krol,
  • Spyros Kassavetis,
  • Dimitris Konstantinou,
  • Charalampos Pitsalidis,
  • Lazaros Tzounis,
  • Nikos Pliatsikas and
  • Stergios Logothetidis

Beilstein J. Nanotechnol. 2015, 6, 254–262, doi:10.3762/bjnano.6.24

Graphical Abstract
  • applied power of the plasma was selected with respect to its effect on the structural and chemical composition of the scaffold. The untreated and plasma-treated nanofibrous scaffolds were evaluated in terms of surface topography, hydrophilicity, and surface chemistry in order to find the conditions that
  • . These findings, which are in correlation with the morphological changes observed by SEM and AFM imaging, underline the positive effect of the mild power plasma conditions on the nanofibrous scaffolds in terms of surface topography. Chemical characterization of the plasma-treated scaffolds As can be
  • : Atomic force microscopy, AFM (AFM Solver, NT-MDT) was used to determine surface topography and roughness of the plasma-treated samples. Chemical characterization Contact angle: Static contact angle measurements using water (Contact angle-surface tensionmeter CAM200, KSV Instruments Ltd) for the untreated
PDF
Album
Full Research Paper
Published 22 Jan 2015

Increasing throughput of AFM-based single cell adhesion measurements through multisubstrate surfaces

  • Miao Yu,
  • Nico Strohmeyer,
  • Jinghe Wang,
  • Daniel J. Müller and
  • Jonne Helenius

Beilstein J. Nanotechnol. 2015, 6, 157–166, doi:10.3762/bjnano.6.15

Graphical Abstract
  • type can be chosen to minimize the background adhesion of the cell line. The production process as well as the handling of the PDMS mask is described in the next sections. In addition, the characterization of surface topography, protein coating and microscopy utility of both types of PDMS masks is
  • adhesive substrates to be measured. The masks were cast in aluminum molds, which can be made in most mechanical workshops. We characterized the masks with regard to surface topography, protein coating ability and applicability for light microscopy. While the PDMS surface was very rough compared to the
PDF
Album
Full Research Paper
Published 14 Jan 2015

Aquatic versus terrestrial attachment: Water makes a difference

  • Petra Ditsche and
  • Adam P. Summers

Beilstein J. Nanotechnol. 2014, 5, 2424–2439, doi:10.3762/bjnano.5.252

Graphical Abstract
  • change the surface topography [26]. Moreover, microorganisms can change the wettability of the substrates surface, which is probably the reason for a different response of some larvae to these surfaces [28]. Some examples of attachment forces for different animals and attachment devices are given in
PDF
Album
Review
Published 17 Dec 2014

Dynamic calibration of higher eigenmode parameters of a cantilever in atomic force microscopy by using tip–surface interactions

  • Stanislav S. Borysov,
  • Daniel Forchheimer and
  • David B. Haviland

Beilstein J. Nanotechnol. 2014, 5, 1899–1904, doi:10.3762/bjnano.5.200

Graphical Abstract
  • by using a microcantilever with a sharp tip at the free end. Measuring cantilever deflections allows not only for the reconstruction of the surface topography but also provides insight into various material properties [2][3]. If deflection is measured near one of the cantilevers resonance frequencies
PDF
Album
Full Research Paper
Published 29 Oct 2014

Cathode lens spectromicroscopy: methodology and applications

  • T. O. Menteş,
  • G. Zamborlini,
  • A. Sala and
  • A. Locatelli

Beilstein J. Nanotechnol. 2014, 5, 1873–1886, doi:10.3762/bjnano.5.198

Graphical Abstract
  • transition allows to map the local work function as well as the variations in the surface topography. The effect of the work function is clear in the inset of Figure 2, in which the adsorption of oxygen on W(110) results in a work function more than 1.2 eV higher than that of the clean surface, with a
PDF
Album
Review
Published 27 Oct 2014

Synthesis of Pt nanoparticles and their burrowing into Si due to synergistic effects of ion beam energy losses

  • Pravin Kumar,
  • Udai Bhan Singh,
  • Kedar Mal,
  • Sunil Ojha,
  • Indra Sulania,
  • Dinakar Kanjilal,
  • Dinesh Singh and
  • Vidya Nand Singh

Beilstein J. Nanotechnol. 2014, 5, 1864–1872, doi:10.3762/bjnano.5.197

Graphical Abstract
  • substrate or due to the reduction in the size of the particles. SEM gives elemental information on the surface while AFM provides surface topography. Therefore, the features in the SEM and the AFM images cannot be compared quantitatively. Moreover, it is not possible to pinpoint the exact surface area by
  • changes in surface topography, shift and intensity loss in Pt peaks), we believe that the nuclear sputtering of the Pt film takes place during ion irradiation resulting in Pt islands on the Si surface. Transient thermal spikes generated by the ion beams are sufficient enough to melt the Pt islands. The
PDF
Album
Supp Info
Full Research Paper
Published 24 Oct 2014

Restructuring of an Ir(210) electrode surface by potential cycling

  • Khaled A. Soliman,
  • Dieter M. Kolb,
  • Ludwig A. Kibler and
  • Timo Jacob

Beilstein J. Nanotechnol. 2014, 5, 1349–1356, doi:10.3762/bjnano.5.148

Graphical Abstract
  • , however less pronounced or less well-defined. Electrochemical treatment including potential cycling of Ir(210) in 0.1 M HCl did not lead to comparable changes, probably because adsorbed chloride hinders oxygen adsorption. In situ STM of Ir(210) after repetitive fast potential cycles The change in surface
  • topography of Ir(210) by repetitive oxidation–reduction potential cycles has been investigated by using in situ STM. Figure 6 shows the corresponding images of Ir(210) in 0.1 M H2SO4 after cycling for 1 min, 20 min, 60 min and 240 min. The series of STM images indicates that the surface morphology is
PDF
Album
Full Research Paper
Published 25 Aug 2014

Surface topography and contact mechanics of dry and wet human skin

  • Alexander E. Kovalev,
  • Kirstin Dening,
  • Bo N. J. Persson and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 1341–1348, doi:10.3762/bjnano.5.147

Graphical Abstract
  • we have analyzed the frictional properties of skin by using the Persson contact mechanics theory. In [6] the surface topography of skin was measured by using an optical method with a resolution of the order of 1 μm. In this paper we report on AFM measurements at a higher resolution. From both optical
  • only on |q| for surfaces with statistically isotropic roughness. Figure 4 shows the power spectra obtained from the AFM topography data, Figure 3, as a function of the wave vector (log10–log10 scale). The red and blue lines are calculated using the surface topography data from Figure 10 in [3] for dry
  • the skin and the countersurface [22]. Conclusion We studied the contact mechanics and friction for dry and water-lubricated human skin. The surface topography is studied by using two different methods, white light interferometry and AFM, which in combination allowed us to obtain the complete surface
PDF
Album
Full Research Paper
Published 22 Aug 2014

Dry friction of microstructured polymer surfaces inspired by snake skin

  • Martina J. Baum,
  • Lars Heepe,
  • Elena Fadeeva and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 1091–1103, doi:10.3762/bjnano.5.122

Graphical Abstract
  • scale [11]. These properties must be kept up over a longer period of time until new skin is moulted. Frictional properties of snake skin in contact with a solid partner depend on (i) the surface energy, (ii) material properties, and (iii) surface topography of the tribo-pair [12][13]. The surface energy
  • gain a deeper understanding of how frictional properties are influenced by surface topography. The results obtained can be explained by mechanical interactions between surfaces at two scales: at a nano scale by the influence of the real contact area, and at a micro scale by an interlocking of the probe
  • ). Despite the fact that frictional anisotropy is not completely congruent to the angle distribution, it can be derived, that the slope of surface topography influences frictional properties, as proposed by, e.g., Abdel-Aal [61], Persson [36] and Popov [37]. Our experiments reveal an influence of the surface
PDF
Album
Full Research Paper
Published 21 Jul 2014

Insect attachment on crystalline bioinspired wax surfaces formed by alkanes of varying chain lengths

  • Elena Gorb,
  • Sandro Böhm,
  • Nadine Jacky,
  • Louis-Philippe Maier,
  • Kirstin Dening,
  • Sasha Pechook,
  • Boaz Pokroy and
  • Stanislav Gorb

Beilstein J. Nanotechnol. 2014, 5, 1031–1041, doi:10.3762/bjnano.5.116

Graphical Abstract
  • , as well as in C50, the small dimensions of the surface structures together with their dense distribution on the surface resulted in a rather smooth surface topography. Such substrate profiles can be replicated by very deformable material down to a micro- or even nanometer scale due to high
PDF
Album
Full Research Paper
Published 14 Jul 2014

The softening of human bladder cancer cells happens at an early stage of the malignancy process

  • Jorge R. Ramos,
  • Joanna Pabijan,
  • Ricardo Garcia and
  • Malgorzata Lekka

Beilstein J. Nanotechnol. 2014, 5, 447–457, doi:10.3762/bjnano.5.52

Graphical Abstract
  • provides the information about fluorescently labeled structures while AFM delivers the topology and the mechanical properties of the sample. In our studies, the fluorescent images of actin filaments were compared with the surface topography. The cytoskeleton is important for a normal cell function, however
PDF
Album
Supp Info
Full Research Paper
Published 10 Apr 2014

Friction behavior of a microstructured polymer surface inspired by snake skin

  • Martina J. Baum,
  • Lars Heepe and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 83–97, doi:10.3762/bjnano.5.8

Graphical Abstract
  • comparable and reproducible investigation of the influence of the surface microstructure on the frictional properties. In order to gain insight in the influence of the snake-inspired anisotropic surface topography, additional surface topographies were investigated. The frictional coefficient of these
  • skin. Each selected type of microstructure is used to investigate the influence of certain features of snake scales responsible for specific frictional behavior. Results In order to characterize the influence of surface topography on frictional properties frictional measurements on differently
  • . Therefore, we were able to investigate in great detail the variations in the frictional behavior depending on the surface topography. Our data did not confirm the previous statement (e.g., [27][28]) that a low frictional coefficient correlates with no or a minimal occurrence of stick-slip behavior. The
PDF
Album
Full Research Paper
Published 24 Jan 2014

Routes to rupture and folding of graphene on rough 6H-SiC(0001) and their identification

  • M. Temmen,
  • O. Ochedowski,
  • B. Kleine Bussmann,
  • M. Schleberger,
  • M. Reichling and
  • T. R. J. Bollmann

Beilstein J. Nanotechnol. 2013, 4, 625–631, doi:10.3762/bjnano.4.69

Graphical Abstract
  • mechanically exfoliated under ambient conditions on 6H-SiC(0001) are modified by (i) swift heavy ion (SHI) irradiation, (ii) by a force microscope tip and (iii) by severe heating. The resulting surface topography and the surface potential are investigated with non-contact atomic force microscopy (NC-AFM) and
PDF
Album
Full Research Paper
Published 07 Oct 2013

Nanoglasses: a new kind of noncrystalline materials

  • Herbert Gleiter

Beilstein J. Nanotechnol. 2013, 4, 517–533, doi:10.3762/bjnano.4.61

Graphical Abstract
  • Fe-based alloys. On the other hand, it is known that the cellular response to materials is significantly influenced by the microstructure of the implanted materials, their surface roughness, their surface topography and their chemical compositions. In order to study [61] the effect of the nanoscale
PDF
Album
Review
Published 13 Sep 2013
Other Beilstein-Institut Open Science Activities