Search results

Search for "synthesis" in Full Text gives 1062 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • biological functions that can be effectively manipulated through the inorganic components, with potential impact on leading applications within the fields of chemical synthesis and catalysis, energy, environment, and biomedicine. Examples of bionanohybrids include the bottom-up fabrication of
  • hand, the use of yolk–silica shell (YS) microstructures formed by soft template synthesis was explored [30] to encapsulate living cells with a highly porous SiO2 network aiming to introduce a small interstitial space between the microorganisms and the silica matrix. The latter strategy intends to
  • to be tested as immobilization matrices of microalgae. Sepiolite–alginate beads, sepiolite–chitosan/alginate thin films, and sepiolite–chitosan foams were produced (Figure 1). Sepiolite and biopolymer concentration, synthesis temperature, and microorganism concentration were modified to study their
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023

Mixed oxides with corundum-type structure obtained from recycling can seals as paint pigments: color stability

  • Dienifer F. L. Horsth,
  • Julia de O. Primo,
  • Nayara Balaba,
  • Fauze J. Anaissi and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 467–477, doi:10.3762/bjnano.14.37

Graphical Abstract
  • , Guarapuava, 85040-167, Brazil 10.3762/bjnano.14.37 Abstract Green chromium and red iron oxides are technically important pigments due to their high color intensity, good dispersibility in paints, and superior hiding power. We report on the synthesis of colored pigments of mixed oxides with a corundum-type
  • differences between the primary (bauxite extraction) and secondary (recycling) synthesis routes. The energy consumption for obtaining secondary aluminium is reduced by 95%, as its raw source is aluminium scrap and used metallic aluminium (i.e., sheets, extrusion, turning, can seals) [2]. In addition, there is
  • a reduction to 5% in greenhouse gas emissions compared to the direct synthesis, reducing the environmental impact. Besides, one ton of recycled aluminium saves up to eight metric tons of bauxite [3][4]. The amount of recycled aluminium packaging depends on individual national recycling policies
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2023

Conjugated photothermal materials and structure design for solar steam generation

  • Chia-Yang Lin and
  • Tsuyoshi Michinobu

Beilstein J. Nanotechnol. 2023, 14, 454–466, doi:10.3762/bjnano.14.36

Graphical Abstract
  • . Photothermal materials (PTMs) applied to SSG include metallic materials, semiconductors, carbon-based materials, and conjugated organic materials [1][2][3][4]. Compared to metallic and inorganic PTMs, π-conjugated organic PTMs have advantages, such as a greater light absorption, easier synthesis, and
  • tuned by changing the donor units that are conjugated with the bridging group. These conjugated small molecules have the advantages of a facile synthesis, abundant derivatives, and tunable properties. However, they have short lifetimes due to low photostability. In order to overcome this issue, rigid
PDF
Album
Review
Published 04 Apr 2023

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • methodology for developing functional material systems using units such as atoms, molecules, and nanomaterials. Especially, molecular nanoarchitectonics has been strongly promoted recently by incorporating nanotechnological methods into organic synthesis. Examples of research that have attracted attention
  • include the direct observation of organic synthesis processes at the molecular level with high resolution, and the control of organic syntheses with probe microscope tips. These can also be considered as starting points for nanoarchitectonics. In this review, these examples of molecular nanoarchitectonics
  • -surface synthesis; Review Introduction Nanotechnology is a game changer that has innovated the course of scientific research. Nanotechnology innovations have unlocked mysteries at the nanoscale [1][2][3]. These research innovations have bridged the gap between nanoscale basic science and materials
PDF
Album
Review
Published 03 Apr 2023

Evaluation of electrosynthesized reduced graphene oxide–Ni/Fe/Co-based (oxy)hydroxide catalysts towards the oxygen evolution reaction

  • Karolina Cysewska,
  • Marcin Łapiński,
  • Marcin Zając,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2023, 14, 420–433, doi:10.3762/bjnano.14.34

Graphical Abstract
  • the surface of nickel foam. The chronoamperometric graph recorded during the deposition is presented in Figure 1a. Each synthesis (except that of GO) began with a fast increase of the cathodic current, which is associated with the formation of the new catalyst phase on the surface of the substrate [25
  • ]. Afterwards, the current density tended to stabilize for NiFe and CoNiFe, which may be associated with the steady-state formation of the catalyst film on the metallic surface. The addition of cobalt to NiFe resulted in a lower overall current density during the synthesis process. In the case of the deposition
  • this case, the cathodic current density decreased during the first 6 s of the synthesis, then it increased and tended to stabilize. The initial drop of the current density may be related to the preparation (e.g., passivation) of the metallic surface for GO deposition. The latter is a typical process in
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • , a higher efficiency of photon absorption, facile tuning, as well as flexibility in the synthesis of plasmonic nanomaterials. This review of plasmonic PT (PPT) research begins with a theoretical discussion on the plasmonic properties of nanoparticles by means of the quasi-static approximation, Mie
  • , specifically in the UV–vis range (as infrared is already applied for heating), efficient of conversion of the absorbed energy into heat (in contrast to scattering), chemical and physical stability of the nanoparticles (e.g., against agglomeration), ease of synthesis, and low cost. Coinage metals, such as Au
  • use in PT applications, while its use in a novel synthesis strategy for SERS-enhancing self-assembled nanoparticles is worth mentioning [105]. Though details about the absence of thermal phenomena for plasmonic nanobubble formation are yet to be confirmed, the important conclusion that increasing the
PDF
Album
Review
Published 27 Mar 2023

New trends in nanobiotechnology

  • Pau-Loke Show,
  • Kit Wayne Chew,
  • Wee-Jun Ong,
  • Sunita Varjani and
  • Joon Ching Juan

Beilstein J. Nanotechnol. 2023, 14, 377–379, doi:10.3762/bjnano.14.32

Graphical Abstract
  • , Selangor, 43900, Malaysia School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, 999077, Hong Kong 10.3762/bjnano.14.32 Keywords: biocompatible nanoparticles; cancer cells; carrageenan; cytotoxic selectivity; green synthesis methods; nanobiotechnology; SARS-CoV-2; self
  • nanobiotechnological processes to encourage the development of these converging technologies for a sustainable economic growth. The synthesis and the characterization of nanoscale biomaterials, the innovative applications of “smart nanoparticles”, and the technological/biological impact of nanoscale systems are just
  • works involving the synthesis of metal nanoparticles using environmentally friendly wet chemical methods in which carrageenan is the main resource. The review summarises the possibility of creating a safe and non-toxic path to the synthesis of nanomaterials while maintaining its properties, such as
PDF
Editorial
Published 27 Mar 2023

Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities

  • Akif Hakan Kurt,
  • Elif Berna Olutas,
  • Fatma Avcioglu,
  • Hamza Karakuş,
  • Mehmet Ali Sungur,
  • Cansu Kara Oztabag and
  • Muhammet Yıldırım

Beilstein J. Nanotechnol. 2023, 14, 362–376, doi:10.3762/bjnano.14.31

Graphical Abstract
  • Medical Informatics, Faculty of Medicine, Duzce University, 81620 Duzce, Türkiye Department of Interdisciplinary Neuroscience, Graduate Education Institute, Bolu Abant Izzet Baysal University, 14030 Bolu, Türkiye 10.3762/bjnano.14.31 Abstract The presented study comprises the one-pot synthesis and the
  • (P. aeruginosa and E. coli) and Gram-positive (S. aureus and S. epidermidis) bacteria was determined, and dose-dependent antibacterial effects were found. Keywords: Ag NPs; anticancer and antibacterial effects; caffeic acid; chitosan; one-pot synthesis; quercetin; U-118 MG and ARPE-19 cells
  • ; Introduction In recent years, nanoscale studies have become an important research area thanks to the ever increasing means of synthesis, characterization, and application of nanoscale materials (1 to 100 nm). Progress and development in nanotechnology have started to make a difference in various areas
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2023

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • synthesis of polyurethane and polyurea from the reaction of poly(ethyleneglycol) or lysine with isophorone diisocyanate (IPDI) [68][69]. Nanoemulsions were prepared using Polysorbate 80 as surfactant, medium-chain triglycerides as the oil phase (O/S ratio from 10/90 to 30/70), and 90 wt % of aqueous phase
PDF
Album
Review
Published 13 Mar 2023

Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles

  • Magdalena Lasak and
  • Karol Ciepluch

Beilstein J. Nanotechnol. 2023, 14, 329–338, doi:10.3762/bjnano.14.28

Graphical Abstract
  • providing a new therapeutic approach that could also be applied in noncancerous applications [41]. Therapeutic and pathological consequences of NanoEL The development of nanotechnology creates a number of possibilities in the synthesis of NPs with the desired physicochemical properties, which will determine
PDF
Album
Review
Published 08 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • photocatalytic degradation of organic dyes and antibiotics in water. The general synthesis of nanometre-sized photocatalytic materials based on bismuth employing energy-efficient techniques is examined. A critical review is also given of ways to improve the photocatalytic activity of the photocatalysts. An
  • the environment in low concentrations (micrograms per litre to nanograms per litre), are persistent and bioactive, potentially posing a threat to the food chain. Macrolides, fluoroquinolones, and tetracycline also have an impact on the synthesis of mitochondrial proteins and chloroplasts in plants [48
  • static electric field, which effectively aids in the separation and transfer of photogenerated carriers. Bulk Bi and Bi-based nanostructure morphologies can also be easily altered using a variety of synthesis techniques due to their unique electrical and optical properties, which are directly tied to the
PDF
Album
Review
Published 03 Mar 2023

Biocatalytic synthesis and ordered self-assembly of silica nanoparticles via a silica-binding peptide

  • Mustafa Gungormus

Beilstein J. Nanotechnol. 2023, 14, 280–290, doi:10.3762/bjnano.14.25

Graphical Abstract
  • and proteins, have been demonstrated to be useful in the synthesis and self-assembly of inorganic nanostructures. Herein, we describe a simple Stöber-based method wherein both the synthesis and the self-assembly of SiO2 nanoparticles can be facilitated by a silica-binding peptide (SiBP). We
  • . The results presented here provide a biomimetic route to the single-step synthesis and assembly of SiO2 nanoparticles into colloidal gels or opal-like structures. Keywords: biocatalysis; biomimetics; nanoparticle; peptide; self-assembly; silica; Introduction Ordered structures of nanoparticles have
  • monodisperse nanoparticles and to modify the surface properties to fully exploit the advantages offered by self-assembly. Biomolecules, such as peptides and proteins, have been demonstrated to be useful in the synthesis and self-assembly of inorganic nanostructures [15][16]. Herein, we have investigated the
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • gene therapy. Additional findings in the field emerged with the combinatorial synthesis of SORT lipid libraries, which improved screening, selection, and optimization of ionizable SORT lipids for exclusive organ/tissue localization. Considerable effort has also been made to understand the influence of
PDF
Album
Review
Published 22 Feb 2023

A novel approach to pulsed laser deposition of platinum catalyst on carbon particles for use in polymer electrolyte membrane fuel cells

  • Bogusław Budner,
  • Wojciech Tokarz,
  • Sławomir Dyjak,
  • Andrzej Czerwiński,
  • Bartosz Bartosewicz and
  • Bartłomiej Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 190–204, doi:10.3762/bjnano.14.19

Graphical Abstract
  • carbon substrate and the chemical synthesis of PtNPs during catalyst fabrication. Platinum was deposited on carbon particles at room temperature using a pulsed laser deposition (PLD) system equipped with an ArF excimer laser (λ = 193 nm). The uniform deposition of PtNPs on carbon supports was achieved
  • from the platinum target to eliminate the chemical functionalization of the carbon substrate and the chemical synthesis of PtNPs. The Pt catalyst was deposited on synthesized highly graphitized carbon particles and XC-72R commercial carbon support using PLD with a specially designed electromechanical
  • , morphology, and chemical composition of the fabricated catalysts were investigated using TEM, SEM, EDX, XPS, and Raman spectroscopy. Electrochemical measurements determined the performance of the fabricated catalysts. Results and Discussion Synthesis of a highly graphitized carbon material The synthesis of
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2023

Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine

  • Zoran M. Marković,
  • Milica D. Budimir,
  • Martin Danko,
  • Dušan D. Milivojević,
  • Pavel Kubat,
  • Danica Z. Zmejkoski,
  • Vladimir B. Pavlović,
  • Marija M. Mojsin,
  • Milena J. Stevanović and
  • Biljana M. Todorović Marković

Beilstein J. Nanotechnol. 2023, 14, 165–174, doi:10.3762/bjnano.14.17

Graphical Abstract
  • synthesis by a solvothermal method. The prepared CQDs were encapsulated into medical grade polyurethane (PU) films by a swelling–encapsulation–shrink method. It was investigated how the precursor influenced the structure (morphology and chemical composition) and further prooxidative, antibacterial, and
  • only a minor role. Furthermore, during the hydrothermal synthesis of CQDs from o-phenylenediamine, the used precursor was able to form slowly a thermodynamically stable polyaniline and further conjugated sp2 domains with NH2 groups. Thus, the formed CQDs do not have reactive centers to generate singlet
  • these CQDs can be very good candidates for bioimaging. Experimental Synthesis and characterization of CQDs and CQDs/polyurethane composite samples CQDs were prepared by a solvothermal method from 0.9 g of o-phenylenediamine (Sigma-Aldrich, Germany) dissolved in 50 mL toluene (Sigma-Aldrich, Germany) for
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2023

Formation of nanoflowers: Au and Ni silicide cores surrounded by SiOx branches

  • Feitao Li,
  • Siyao Wan,
  • Dong Wang and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2023, 14, 133–140, doi:10.3762/bjnano.14.14

Graphical Abstract
  • nanoparticles [5][6][7]. The research of thin film dewetting has been extended to bilayers and multilayers for the synthesis of multicomponent nanoparticles [8][9][10][11][12][13][14][15][16], like alloyed AuNi and AuAg nanoparticles produced by the solid-state dewetting of bilayers [17][18][19][20][21][22][23
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2023

Antimicrobial and mechanical properties of functionalized textile by nanoarchitectured photoinduced Ag@polymer coating

  • Jessica Plé,
  • Marine Dabert,
  • Helene Lecoq,
  • Sophie Hellé,
  • Lydie Ploux and
  • Lavinia Balan

Beilstein J. Nanotechnol. 2023, 14, 95–109, doi:10.3762/bjnano.14.11

Graphical Abstract
  • , metal-based nanoparticles (MNPs) are of particular interest for such applications as they exhibit impressive antibacterial and antifungal properties. Unlike antibiotics for example, that target cell wall synthesis, translational machinery and DNA replication inside bacteria cells [7], MNPs simply attack
  • been carried out on the coating of unaltered textile substrates with hybrid MNP-polymer films for antimicrobial applications. In a previous work [47][48], we presented an innovative one-pot, one-step photoinduced synthesis to generate silver and gold-polymer nanofilms on a glass substrate. The kinetic
  • electron microscopy (SEM), transmission electron microscopy (TEM), and reflectance measurements to assess the optical properties and the durability of the functionalized textiles. Results and Discussion Photoinduced synthesis of the Ag@polymer coating Specific monomers poly(ethylene glycol) 600 diacrylate
PDF
Album
Full Research Paper
Published 12 Jan 2023

Combining physical vapor deposition structuration with dealloying for the creation of a highly efficient SERS platform

  • Adrien Chauvin,
  • Walter Puglisi,
  • Damien Thiry,
  • Cristina Satriano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 83–94, doi:10.3762/bjnano.14.10

Graphical Abstract
  • Nanostructured noble metal thin films are highly studied for their interesting plasmonic properties. The latter can be effectively used for the detection of small and highly diluted molecules by the surface-enhanced Raman scattering (SERS) effect. Regardless of impressive detection limits achieved, synthesis
  • due to their interconnected nanostructures and large surface areas [17][18][19]. A myriad of techniques is available for the synthesis of porous nanostructures [20][21]. Among them, dealloying has received particular attention due to its simple methodology [17][22]. This method involves the leaching
  • substrates with better reliability and stability compared to conventional NP-based SERS substrates [25]. The race towards more efficient SERS platforms has led to the development of highly complex synthesis processes which limits their use in practical applications [15][26][27][28][29]. Most reports on
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2023

Solvent-induced assembly of mono- and divalent silica nanoparticles

  • Bin Liu,
  • Etienne Duguet and
  • Serge Ravaine

Beilstein J. Nanotechnol. 2023, 14, 52–60, doi:10.3762/bjnano.14.6

Graphical Abstract
  • Particles with attractive patches are appealing candidates to be used as building units to fabricate novel colloidal architectures by self-assembly. Here, we report the synthesis of one-patch silica nanoparticles, which consist of silica half-spheres whose concave face carries in its center a polymeric
  • patch made of grafted polystyrene chains. The multistage synthesis allows for a fine control of the patch-to-particle size ratio from 0.23 to 0.57. The assembly of the patchy nanoparticles can be triggered by reducing the solvent quality for the polystyrene chains. Dimers or trimers can be obtained by
  • that the addition of 1-PSN with a lower PPSR value of 0.38 allows us to control the length of 2-PSN chains in a wider range of compositions. Results and Discussion Synthesis of one-patch silica particles with well-controlled patch-to-particle size ratio Figure 1 shows the multistep approach developed
PDF
Album
Full Research Paper
Published 06 Jan 2023

The influence of structure and local structural defects on the magnetic properties of cobalt nanofilms

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Olesya Severyukhina and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2023, 14, 23–33, doi:10.3762/bjnano.14.3

Graphical Abstract
  • Alexander Vakhrushev Aleksey Fedotov Olesya Severyukhina Anatolie Sidorenko Modeling and Synthesis of Technological Structures Department, Institute of Mechanics, Udmurt Federal Research Centre, Ural Division, Russian Academy of Sciences, Baramzinoy 34, Izhevsk 426067, Russia Orel State University
PDF
Album
Full Research Paper
Published 04 Jan 2023

Two-step single-reactor synthesis of oleic acid- or undecylenic acid-stabilized magnetic nanoparticles by thermal decomposition

  • Mykhailo Nahorniak,
  • Pamela Pasetto,
  • Jean-Marc Greneche,
  • Volodymyr Samaryk,
  • Sandy Auguste,
  • Anthony Rousseau,
  • Nataliya Nosova and
  • Serhii Varvarenko

Beilstein J. Nanotechnol. 2023, 14, 11–22, doi:10.3762/bjnano.14.2

Graphical Abstract
  • single reactor using Fe(III) acetylacetonate as the initial precursor for the synthesis of Fe(III) oleate or Fe(III) undecylate followed by their thermolysis in situ. We proposed a new approach, according to which the essential magnetite precursor (a complex salt of higher acids – Fe(III) alkanoates) is
  • particle mass. The result is a significantly different resistance to oxidation of the nanoparticle inorganic cores. The core of the particles synthesized using oleic acid is composed of more than 90% of maghemite. When undecylenic acid is used for the synthesis, the core is composed of 75% of magnetite
  • . Keywords: Fe(III) acetylacetonate; iron oxide nanoparticles; maghemite; magnetic nanoparticles; magnetite; thermal decomposition synthesis; Introduction Magnetic nanoparticles are increasingly being used in various fields thanks to the recent progress in their controlled synthesis and knowledge of their
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2023

Single-step extraction of small-diameter single-walled carbon nanotubes in the presence of riboflavin

  • Polina M. Kalachikova,
  • Anastasia E. Goldt,
  • Eldar M. Khabushev,
  • Timofei V. Eremin,
  • Timofei S. Zatsepin,
  • Elena D. Obraztsova,
  • Konstantin V. Larionov,
  • Liubov Yu. Antipina,
  • Pavel B. Sorokin and
  • Albert G. Nasibulin

Beilstein J. Nanotechnol. 2022, 13, 1564–1571, doi:10.3762/bjnano.13.130

Graphical Abstract
  • SWCNTs led to the upscaling of nanotube synthesis from laboratory reactors to cutting-edge manufacturing all over the world. Usually, raw SWCNTs consist of highly bundled structures due to strong van der Waals interactions between nanotubes, which alter and deteriorate their outstanding intrinsic
  • agents [6][7][8]. Despite significant progress toward the synthesis of monochiral and chirality-enriched carbon nanotubes, further improvements are of unmet need even at the laboratory scale [3][8]. As SWCNT synthesis yields a distribution of bundled (n,m) types, solubilizing and isolating specific
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2022

Photoelectrochemical water oxidation over TiO2 nanotubes modified with MoS2 and g-C3N4

  • Phuong Hoang Nguyen,
  • Thi Minh Cao,
  • Tho Truong Nguyen,
  • Hien Duy Tong and
  • Viet Van Pham

Beilstein J. Nanotechnol. 2022, 13, 1541–1550, doi:10.3762/bjnano.13.127

Graphical Abstract
  • , which can improve the charge transfer states [33][34]. These two low-bandgap semiconductors improved considerably the PEC water splitting efficiency [35][36]. However, the fabrication of MoS2/TNAs and g-C3N4/TNAs has many disadvantages such as high synthesis temperatures, the requirement of a binder, or
  • expensive synthesis equipment [29][36][37][38]. In this study, we compare properties and PEC water splitting efficiency of TNAs combined with the typical 2D materials MoS2 and g-C3N4 obtained with the same synthesis procedure. Insightful studies about optical and electronic properties have been conducted to
  • explain clearly the difference between these composite materials Experimental Materials and chemicals Chemicals and materials for the synthesis and characterization include Ti foil (1 cm × 2 cm), hydrochloric acid (HCl), sodium hydroxide (NaOH), DI water, acetone ((CH3)2CO), ethanol (C2H5OH), ammonium
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2022

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • MWCNTs and TiO2@MWCNTs, which could result from the catalyzed synthesis of MWCNTs [14]. Raman spectroscopy is applied for phase characterization of MWCNTs and TiO2@MWCNTS, as shown in Figure 5. The peaks at 178, 424, and 609 cm−1 are characteristic of the TiO2 phase in the TiO2@MWCNTs catalyst [21]. In
PDF
Album
Full Research Paper
Published 14 Dec 2022

In search of cytotoxic selectivity on cancer cells with biogenically synthesized Ag/AgCl nanoparticles

  • Mitzi J. Ramírez-Hernández,
  • Mario Valera-Zaragoza,
  • Omar Viñas-Bravo,
  • Ariana A. Huerta-Heredia,
  • Miguel A. Peña-Rico,
  • Erick A. Juarez-Arellano,
  • David Paniagua-Vega,
  • Eduardo Ramírez-Vargas and
  • Saúl Sánchez-Valdes

Beilstein J. Nanotechnol. 2022, 13, 1505–1519, doi:10.3762/bjnano.13.124

Graphical Abstract
  • , Saltillo Coahuila, 25294, México 10.3762/bjnano.13.124 Abstract Green synthesis may be a useful approach to achieve selective cytotoxicity of silver nanoparticles on cancer cells and healthy cells. In this study, the concomitant biosynthesis of silver (Ag)/silver chloride (AgCl) nanoparticles from
  • comparison to monocytes. Keywords: cancer cells; cytotoxic behavior; green synthesis; pineapple extract; silver chloride nanoparticles; silver nanoparticles; structural characterization; Introduction The study of metallic nanoparticle synthesis by green methods is gaining importance, especially in cases
  • of this work is based on three major points. Firstly, by taking advantage of using pineapple waste, green synthesis methods were applied to obtain silver nanoparticles. In this way, an alternative use of agricultural residues was created, providing added value to fruit products. The second point is
PDF
Album
Full Research Paper
Published 13 Dec 2022
Other Beilstein-Institut Open Science Activities