Search results

Search for "synthesis" in Full Text gives 1062 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

The influence of an interfacial hBN layer on the fluorescence of an organic molecule

  • Christine Brülke,
  • Oliver Bauer and
  • Moritz M. Sokolowski

Beilstein J. Nanotechnol. 2020, 11, 1663–1684, doi:10.3762/bjnano.11.149

Graphical Abstract
  • to its mechanical [15], chemical [16], and thermal [17] stability, the easy synthesis of hBN monolayers on Cu foils for usage in devices [18], and, finally, the wide structural variety of hBN monolayers depending on the underlying metal substrate [19]. To investigate the decoupling of an organic
PDF
Album
Full Research Paper
Published 03 Nov 2020

Selective detection of complex gas mixtures using point contacts: concept, method and tools

  • Alexander P. Pospelov,
  • Victor I. Belan,
  • Dmytro O. Harbuz,
  • Volodymyr L. Vakula,
  • Lyudmila V. Kamarchuk,
  • Yuliya V. Volkova and
  • Gennadii V. Kamarchuk

Beilstein J. Nanotechnol. 2020, 11, 1631–1643, doi:10.3762/bjnano.11.146

Graphical Abstract
  • special technique during the synthesis of this nanostructure. The production of the energy source and the matrix as a whole is based on electrochemical processes described previously [34][37][38]. The applied technology guaranteed high reliability and longevity to the sensor elements. Point-contact sensor
  • energy conservation in the organism, and affects the synthesis of cellular enzymes. Cortisol generates the defense reactions of the organism against external threats and stressful situations [52]; therefore, it is called the “stress hormone”. In the case of heavy stress, cortisol changes the muscle
  • complex response curve can be a systematic approach to the synthesis of its characteristic elements and the search for singularities associated with the target object. One of the directions of the systematic approach can be related to the analysis of the level of correlation of the sensor output parameter
PDF
Album
Full Research Paper
Published 28 Oct 2020

High-responsivity hybrid α-Ag2S/Si photodetector prepared by pulsed laser ablation in liquid

  • Raid A. Ismail,
  • Hanan A. Rawdhan and
  • Duha S. Ahmed

Beilstein J. Nanotechnol. 2020, 11, 1596–1607, doi:10.3762/bjnano.11.142

Graphical Abstract
  • Raid A. Ismail Hanan A. Rawdhan Duha S. Ahmed Department of Applied Science, University of Technology, Baghdad, Iraq 10.3762/bjnano.11.142 Abstract We report the synthesis of α-Ag2S nanoparticles (NPs) by one-step laser ablation of a silver target in aqueous solution of thiourea (Tu, CH4N2S
PDF
Album
Full Research Paper
Published 21 Oct 2020

Electrokinetic characterization of synthetic protein nanoparticles

  • Daniel F. Quevedo,
  • Cody J. Lentz,
  • Adriana Coll de Peña,
  • Yazmin Hernandez,
  • Nahal Habibi,
  • Rikako Miki,
  • Joerg Lahann and
  • Blanca H. Lapizco-Encinas

Beilstein J. Nanotechnol. 2020, 11, 1556–1567, doi:10.3762/bjnano.11.138

Graphical Abstract
  • , non-small cell lung cancer, and pancreatic adenocarcinomas [9]. Current technologies allow for the synthesis of smart PNPs that release their active enzymatic load into oxidative environments [6]. A next step to further advance smart protein nanoparticle technologies is to develop a scalable method
  • nanoparticles and allow for the accurate prediction of SPNPs behavior in any EK device. The results obtained here shed light on the great potential of insulator-based EK devices to be used for the analysis and purification of protein nanoparticles. Results and Discussion Synthesis and characterization of
  • characterized (Table 1). SPNP-Lys-488s had a size distribution and ζp value similar to those of the BSA SPNPs when measured in the EK buffer (Figure S2, Supporting Information File 1). The small differences in size distribution were mainly due to stochastic variabilities during particle synthesis; however, all
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2020

Cu2O nanoparticles for the degradation of methyl parathion

  • Juan Rizo,
  • David Díaz,
  • Benito Reyes-Trejo and
  • M. Josefina Arellano-Jiménez

Beilstein J. Nanotechnol. 2020, 11, 1546–1555, doi:10.3762/bjnano.11.137

Graphical Abstract
  • organisms. While this may be an advantage for water disinfection, it is a great disadvantage for the removal of OPPs in natural waters. Thus, Cu2O NPs are an excellent substance for the degradation of MP. Experimental Reagents The chemical reagents used for the synthesis of Cu2O NPs were: copper(II) sulfate
  • used for the synthesis of Cu2O NPs with different sizes, it is not used in the degradation of MP. Methyl parathion degradation The degradation of MP was achieved in deionized water by reacting MP with Cu2O NPs in a 1:5 molar ratio. This was carried out using 250 mL of a 1.5 × 10−4 M aqueous solution of
PDF
Album
Full Research Paper
Published 12 Oct 2020

Optically and electrically driven nanoantennas

  • Monika Fleischer,
  • Dai Zhang and
  • Alfred J. Meixner

Beilstein J. Nanotechnol. 2020, 11, 1542–1545, doi:10.3762/bjnano.11.136

Graphical Abstract
  • top-down approaches such as thin film deposition and nanopatterning, as well as bottom-up approaches such as chemical synthesis and self-assembly [38]. Gap sizes may range from a few tens of nanometers down to sub-nanometer tunnel junctions, where the classical description of the plasmonic behavior
PDF
Editorial
Published 07 Oct 2020

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • state-of-the-art in metal-based nanoparticles, focusing on their synthesis methods, types, and their antimicrobial action. Different techniques used to synthesize metal-based nanoparticles were discussed, including chemical and physical methods and “green synthesis” methods that are free of chemical
  • . Keywords: antimicrobial mechanism; antimicrobial nanoparticles; metallic nanoparticles; nanoparticle synthesis; nosocomial infections; Review Introduction In the last decades, the search for new antimicrobial substances against microbial contamination has been the focus of many research fields, in public
  • regarding their surface area, size, distribution, and morphology [6][7][8]. Research evidence shows that antimicrobial properties clearly depend on the synthesis method used to obtain the NPs. These synthesis procedures can be classified into physical, chemical, and biological methods [9]. In general
PDF
Album
Review
Published 25 Sep 2020

One-step synthesis of carbon-supported electrocatalysts

  • Sebastian Tigges,
  • Nicolas Wöhrl,
  • Ivan Radev,
  • Ulrich Hagemann,
  • Markus Heidelmann,
  • Thai Binh Nguyen,
  • Stanislav Gorelkov,
  • Stephan Schulz and
  • Axel Lorke

Beilstein J. Nanotechnol. 2020, 11, 1419–1431, doi:10.3762/bjnano.11.126

Graphical Abstract
  • Abstract Cost-efficiency, durability, and reliability of catalysts, as well as their operational lifetime, are the main challenges in chemical energy conversion. Here, we present a novel, one-step approach for the synthesis of Pt/C hybrid material by plasma-enhanced chemical vapor deposition (PE-CVD). The
  • acetylacetonate precursors. Keywords: electrocatalyst; fuel cells; hybrid nanomaterial; long-term stability; nanoparticle embedding; one-step synthesis; plasma-enhanced chemical vapor deposition (PE-CVD); Introduction The global fuel cell market reached a value of $4.5 billion USD in 2018 and is projected to
  • group metals) required for electrode materials produced by conventional synthesis approaches is still cost-inefficient for broader commercial application [4][5]. Furthermore, since surfactants (capping agents) are typically applied in the traditional wet chemical synthesis of metal nanoparticles in
PDF
Album
Supp Info
Full Research Paper
Published 17 Sep 2020

Transient coating of γ-Fe2O3 nanoparticles with glutamate for its delivery to and removal from brain nerve terminals

  • Konstantin Paliienko,
  • Artem Pastukhov,
  • Michal Babič,
  • Daniel Horák,
  • Olga Vasylchenko and
  • Tatiana Borisova

Beilstein J. Nanotechnol. 2020, 11, 1381–1393, doi:10.3762/bjnano.11.122

Graphical Abstract
  • Synthesis of superparamagnetic maghemite (γ-Fe2O3) nanoparticles γ-Fe2O3 nanoparticles were synthesized and characterized according to [21]. A 0.5 M solution of NH4OH (subaliquot amount needed for quantitative formation of Fe(OH)3) was added dropwise to a 0.5 M aqueous solution of FeCl3 under sonication
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2020

Effect of localized helium ion irradiation on the performance of synthetic monolayer MoS2 field-effect transistors

  • Jakub Jadwiszczak,
  • Pierce Maguire,
  • Conor P. Cullen,
  • Georg S. Duesberg and
  • Hongzhou Zhang

Beilstein J. Nanotechnol. 2020, 11, 1329–1335, doi:10.3762/bjnano.11.117

Graphical Abstract
  • demonstrated impressive on/off ratios (approx. 107) in field-effect transistors (FETs), while maintaining carrier mobilities that may be adequate for commercial applications [1][2]. At the same time, advances in chemical vapor deposition (CVD) techniques have allowed for the reliable millimeter-scale synthesis
PDF
Album
Full Research Paper
Published 04 Sep 2020

Structure and electrochemical performance of electrospun-ordered porous carbon/graphene composite nanofibers

  • Yi Wang,
  • Yanhua Song,
  • Chengwei Ye and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 1280–1290, doi:10.3762/bjnano.11.112

Graphical Abstract
  • configurations were used as a material to fabricate supercapacitor electrodes. These nanofibers were synthesized by applying a modified parallel electrode to the electrospinning method (MPEM) in order to generate electrospun polyacrylonitrile (PAN) nanofibers containing graphene. After synthesis, these fibers
PDF
Album
Full Research Paper
Published 27 Aug 2020

Role of redox-active axial ligands of metal porphyrins adsorbed at solid–liquid interfaces in a liquid-STM setup

  • Thomas Habets,
  • Sylvia Speller and
  • Johannes A. A. W. Elemans

Beilstein J. Nanotechnol. 2020, 11, 1264–1271, doi:10.3762/bjnano.11.110

Graphical Abstract
  • spectra were measured in reflective mode with dithranol as a matrix on a Bruker Microflex LRF MALDI-TOF mass spectrometer (Bruker, Billerica, MA, USA). UV–vis spectra were recorded on a Varian Cary 50 UV–vis spectrophotometer. Syntheses Synthesis of MnTUPOCl and CuTUP Compounds MnTUPCl [7] and CuTUP [10
  • ] were synthesized according to literature procedures. Synthesis of MnTUPOAc A solution of the free ligand TUP [7] (50 mg, 0.054 mmol) and Mn(OAc)2·4H2O (52 mg, 0.21 mmol) in argon-purged DMF (5 mL) was stirred and heated at reflux under argon for 3 h. After cooling, the solvent was evaporated and the
PDF
Album
Full Research Paper
Published 24 Aug 2020

Magnetic-field-assisted synthesis of anisotropic iron oxide particles: Effect of pH

  • Andrey V. Shibaev,
  • Petr V. Shvets,
  • Darya E. Kessel,
  • Roman A. Kamyshinsky,
  • Anton S. Orekhov,
  • Sergey S. Abramchuk,
  • Alexei R. Khokhlov and
  • Olga E. Philippova

Beilstein J. Nanotechnol. 2020, 11, 1230–1241, doi:10.3762/bjnano.11.107

Graphical Abstract
  • University, Albert-Einstein-Allee 11, 89069 Ulm, Germany 10.3762/bjnano.11.107 Abstract The synthesis of magnetite (Fe3O4) nanorods using reverse co-precipitation of Fe3+ and Fe2+ ions in the presence of a static magnetic field is reported in this work. The phase composition and crystal structure of the
  • synthesis and investigation of anisotropic magnetic nanomaterials has received much attention in the last years [1][2][3]. Among different magnetic nanomaterials, iron oxides and hydroxides are of particular interest because of their high magnetization capability, availability, low toxicity and
  • binding to and an enhanced retention at the target sites [26] due to their larger contact area and multidentate interactions with the cell membranes. Thus, rod-like nanoparticles are preferred in many applications. However, their synthesis is more complicated than the synthesis of nanospheres since the
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2020

Gas sorption porosimetry for the evaluation of hard carbons as anodes for Li- and Na-ion batteries

  • Yuko Matsukawa,
  • Fabian Linsenmann,
  • Maximilian A. Plass,
  • George Hasegawa,
  • Katsuro Hayashi and
  • Tim-Patrick Fellinger

Beilstein J. Nanotechnol. 2020, 11, 1217–1229, doi:10.3762/bjnano.11.106

Graphical Abstract
  • formation and reversible alkali metal storage. Experimental Material synthesis Preparation of carbons derived from ᴅ-fructose The carbons synthesized via hydrothermal method were produced by a step synthesis similar to the reported preparation according to Väli et al. [30] and Fellinger and co-workers [32
  • ]. The first step was a hydrothermal synthesis of a precursor, followed by a pyrolytic carbonization to get the final HC product. At first, a 25 wt % solution of ᴅ-fructose (Sigma-Aldrich, Germany) in deionized water (Millipore, Merck, Germany) was prepared. Similar to a synthesis reported by Fellinger
  • precursor overnight at 70 °C under vacuum, it was carbonized in a tube furnace with argon flow at a rate of higher than 0.5 L min−1 at 1000 °C for 1, 5, or 10 h. The carbons produced by this hydrothermal method (HT carbons) will be called HTx, where x is an integer. The synthesis conditions (temperature of
PDF
Album
Supp Info
Full Research Paper
Published 14 Aug 2020

High permittivity, breakdown strength, and energy storage density of polythiophene-encapsulated BaTiO3 nanoparticles

  • Adnanullah Khan,
  • Amir Habib and
  • Adeel Afzal

Beilstein J. Nanotechnol. 2020, 11, 1190–1197, doi:10.3762/bjnano.11.103

Graphical Abstract
  • . This article presents the synthesis of polythiophene-encapsulated BaTiO3 (BTO-PTh) nanoparticles via an in situ Cu(II)-catalyzed chemical oxidative polymerization of thiophene monomer on hydrothermally obtained tetragonal BTO nanocrystals. The formed core–shell-type BTO-PTh nanoparticles exhibit
  • )-encapsulated BaTiO3 nanoparticles with a 9:1 mass ratio of BTO/PTh, and a facile method for the synthesis of inverted [11] core–shell-type BTO-PTh nanostructures, which yields a uniform PTh coating on the BTO surface. BTO-PTh nanoparticles are prepared by Cu(II)-catalyzed oxidative polymerization of PTh on the
  • dioxide (TiO2 Tronox, 99.5%, Tronox Pigments GmbH) are used as Ba and Ti precursors for the hydrothermal synthesis of BTO nanoparticles. Ba(OH)2·8H2O also acts as the mineralizer and prevents the use of NaOH or KOH for controlling the pH value of the reaction mixture [12]. Equimolar amounts of Ba and Ti
PDF
Album
Full Research Paper
Published 10 Aug 2020

Revealing the local crystallinity of single silicon core–shell nanowires using tip-enhanced Raman spectroscopy

  • Marius van den Berg,
  • Ardeshir Moeinian,
  • Arne Kobald,
  • Yu-Ting Chen,
  • Anke Horneber,
  • Steffen Strehle,
  • Alfred J. Meixner and
  • Dai Zhang

Beilstein J. Nanotechnol. 2020, 11, 1147–1156, doi:10.3762/bjnano.11.99

Graphical Abstract
  • electronic functionality of such nanometer-scale building blocks. A rational and well-established synthesis strategy for the creation of complex silicon nanostructures is metal-catalyzed vapor–liquid–solid (VLS) nanowire growth [13]. VLS nanowire growth belongs to the gas-phase synthesis procedures, similar
  • to chemical vapor deposition (CVD), and enables direct nanowire growth in a bottom-up manner. The nanowire composition, in particular the doping concentration, can be controlled by an adequate adjustment of the synthesis gas mixture, e.g., by setting the SiH4/B2H6 ratio during the synthesis of boron
  • nanocrystalline, depending on the synthesis parameters. Hence, these nanowires resemble ideal objects to study local crystallinity variations at the sub-10 nanometer scale using TERS. Furthermore, polarization angle-resolved spectroscopy is for the first time combined with TERS, in order to reveal the different
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2020

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • , published in 2020, involved the synthesis of CuS nanoparticle monolayers on glass [85]. As shown in Figure 6, the antibacterial activity of these monolayers is based on two different mechanisms: (i) slow and sustained copper release from the CuS NP-glass samples, (ii) local temperature increase caused by a
PDF
Album
Review
Published 31 Jul 2020

Gram-scale synthesis of splat-shaped Ag–TiO2 nanocomposites for enhanced antimicrobial properties

  • Mohammad Jaber,
  • Asim Mushtaq,
  • Kebiao Zhang,
  • Jindan Wu,
  • Dandan Luo,
  • Zihan Yi,
  • M. Zubair Iqbal and
  • Xiangdong Kong

Beilstein J. Nanotechnol. 2020, 11, 1119–1125, doi:10.3762/bjnano.11.96

Graphical Abstract
  • , antimicrobial and photocatalytic activities [3]. The main challenges of using the nanocomposites in the biomedical and textile-coating fields are to keep the synthesis processes at a low cost and to control for yield and stability issues. Currently, a number of techniques such as electron beam evaporation
  • , magnetron sputtering, molecular precursor techniques and photo-deposition techniques have been applied to the preparation of nanocomposites [6][21][22]. However, these techniques are very sophisticated and not optimized for synthesis on a large scale. Herein, a simple hydrothermal process was employed to
  • activity of the as-prepared nanocomposites was investigated against Gram-positive S. aureus and Gram-negative E. coli. Experimental Synthesis of the Ag–TiO2 nanocomposite A hydrothermal method was used to prepare the Ag–TiO2 nanocomposite on a gram-scale. 1.25 mol/L of a 16.0 mL titanium sulfate solution
PDF
Album
Full Research Paper
Published 29 Jul 2020

Straightforward synthesis of gold nanoparticles by adding water to an engineered small dendrimer

  • Sébastien Gottis,
  • Régis Laurent,
  • Vincent Collière and
  • Anne-Marie Caminade

Beilstein J. Nanotechnol. 2020, 11, 1110–1118, doi:10.3762/bjnano.11.95

Graphical Abstract
  • the growth and stabilization of isolated gold nanoparticles. Thus, an unprecedented method for the synthesis of colloidal suspensions of water-soluble gold nanoparticles was proposed in this work. Keywords: colloidal suspension; complexation; dendrimer; gold nanoparticle; phosphorus; Introduction
  • for bio-imaging and cancer therapy [6][7]. In most cases, the synthesis of gold nanoparticles is carried out by the reaction between HAuCl4 and a reducing agent (in particular NaBH4) in the presence of a suitable compound to simultaneously prevent the aggregation of the nanoparticles and to stabilize
  • general [18][19] but also specifically for gold nanoparticles [20][21][22]. Indeed, due to the well-defined three-dimensional structure of dendrimers they are suitable templates for the synthesis of nanoparticles in the presence of a reducing agent [23] and prevent nanoparticle aggregation and oxidation
PDF
Album
Supp Info
Letter
Published 28 Jul 2020

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
  • of iron oxides in the form of magnetite (Fe3O4) or maghemite (Fe2O3) and are easy to produce through a few well-documented synthesis methods yielding different forms and structures (e.g., round, cubic, hexagonal, clusters, core–shell with gold, silica, polymers, or surfactants). A lot of research is
  • downside to using SPIONs. Many of the specialists working in the development of SPIONs would say that it depends on the synthesis and the characteristics of the nanoparticles. However, some SPIONs previously approved for MRI where eventually redrawn from the market. So, which SPIONs are safe and which are
  • /Pubmed and Web of Science (WoS) for article and review papers and books reporting on effects, uses, in vivo and in vitro tests, toxicology, synthesis and properties of SPIONs. We used single terms or combinations of one or more of the listed terms. This search was carried out for the period between June
PDF
Album
Review
Published 27 Jul 2020

Plant growth regulation by seed coating with films of alginate and auxin-intercalated layered double hydroxides

  • Vander A. de Castro,
  • Valber G. O. Duarte,
  • Danúbia A. C. Nobre,
  • Geraldo H. Silva,
  • Vera R. L. Constantino,
  • Frederico G. Pinto,
  • Willian R. Macedo and
  • Jairo Tronto

Beilstein J. Nanotechnol. 2020, 11, 1082–1091, doi:10.3762/bjnano.11.93

Graphical Abstract
  • layered compounds, emerges as a very promising approach to a new form of growth regulator application. Thus, the presented work had three aims: (i) the synthesis and characterization of an organic–inorganic hybrid material containing a layered double hydroxide (LDH) of zinc and aluminum and the synthetic
  • growth. This work describes (i) the synthesis and characterization of a zinc–aluminium LDH intercalated with NAA (ZnAl-NAA-LDH); (ii) the preparation a hybrid films for bean seed coating (Phaseolus vulgaris L.) containing a mixture of sodium alginate and ZnAl-NAA-LDH; (iii) bioassays with the coated
  • in the UV–vis region (37.1%) and the Zn/Al molar ratio of 2, the following formula is proposed for the hybrid material: Zn2Al(OH)6](NAA)·3H2O (calculated: 37.1% of NAA; 10.8% of H2O). The morphology and porosity of LDHs can change depending on the synthesis method and also on the chemical
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2020

A few-layer graphene/chlorin e6 hybrid nanomaterial and its application in photodynamic therapy against Candida albicans

  • Selene Acosta,
  • Carlos Moreno-Aguilar,
  • Dania Hernández-Sánchez,
  • Beatriz Morales-Cruzado,
  • Erick Sarmiento-Gomez,
  • Carla Bittencourt,
  • Luis Octavio Sánchez-Vargas and
  • Mildred Quintana

Beilstein J. Nanotechnol. 2020, 11, 1054–1061, doi:10.3762/bjnano.11.90

Graphical Abstract
  • synthesis of FLG by the exfoliation of graphite in water and phosphate buffer saline (PBS) using Ce6 as the stabilizing molecule. The π–π stacking interactions between FLG and Ce6 allows the stabilization of FLG in biocompatible media. Following this methodology, a FLG-Ce6 hybrid nanomaterial was prepared
  • instruments or medical-grade supplies (such as sheets, tubes, robes) to facilitate their sterilization, thus maintaining a clean and fungi-free environment and preventing the occurrence of nosocomial infections, are farsighted. Experimental Synthesis of a sterile graphene/chlorin e6 hybrid material The few
  • supernatant was filtered and washed with deionized water and resuspended in 10 mL of deionized water. The synthesis methodology was always carried out under sterile conditions. Characterization The UV–vis spectroscopy characterization was carried out with a Cary 60 UV–visible spectrophotometer using 10 mm
PDF
Album
Full Research Paper
Published 17 Jul 2020

Excitonic and electronic transitions in Me–Sb2Se3 structures

  • Nicolae N. Syrbu,
  • Victor V. Zalamai,
  • Ivan G. Stamov and
  • Stepan I. Beril

Beilstein J. Nanotechnol. 2020, 11, 1045–1053, doi:10.3762/bjnano.11.89

Graphical Abstract
  • typical Sb2Se3 diffractogram is shown in Figure 1B. This result indicates the complete miscibility of the components during the synthesis process. The Sb2Se3 lattice parameters were determined based on the XRD analysis. The experimental interplanar distances dhkl, obtained from the X-ray data for Sb2Se3
PDF
Album
Full Research Paper
Published 16 Jul 2020

Highly sensitive detection of estradiol by a SERS sensor based on TiO2 covered with gold nanoparticles

  • Andrea Brognara,
  • Ili F. Mohamad Ali Nasri,
  • Beatrice R. Bricchi,
  • Andrea Li Bassi,
  • Caroline Gauchotte-Lindsay,
  • Matteo Ghidelli and
  • Nathalie Lidgi-Guigui

Beilstein J. Nanotechnol. 2020, 11, 1026–1035, doi:10.3762/bjnano.11.87

Graphical Abstract
  • formation of NPs. A TiO2 (99.9%) target was ablated using a Nd:YAG laser (λ = 532 nm) with a pulse duration of 5–7 ns and 10 Hz repetition rate. The laser fluence on the target is 3.5 J·cm−2 and the pulse energy is 200 mJ. Film synthesis was carried out at room temperature in oxygen atmosphere, using both
PDF
Album
Full Research Paper
Published 14 Jul 2020

Microwave-induced electric discharges on metal particles for the synthesis of inorganic nanomaterials under solvent-free conditions

  • Vijay Tripathi,
  • Harit Kumar,
  • Anubhav Agarwal and
  • Leela S. Panchakarla

Beilstein J. Nanotechnol. 2020, 11, 1019–1025, doi:10.3762/bjnano.11.86

Graphical Abstract
  • nanoparticles of Cu and Ni and one-dimensional nanorods of CuS, ZnF2, and NiF2 protected with fluorinated amorphous carbon. We have also synthesized reduced graphene oxide and partially rolled graphene by this method. Keywords: electric discharges; microwave synthesis; nanomaterials; transmission electron
  • microscopy; Introduction The synthesis of nanomaterials in short time intervals with fewer chemicals has become increasingly important in materials science. Traditional routes of synthesizing nanomaterials, including sol–gel synthesis, solvothermal synthesis, arc-discharge synthesis, or laser ablation
  • , require either large amounts of chemicals or longer synthesis times, or both [1]. Microwave synthesis has become popular in the last three decades as an alternative route for synthesizing molecules and materials at a significantly shorter time scale [2][3][4][5][6][7][8]. Dielectric heating under
PDF
Album
Supp Info
Full Research Paper
Published 13 Jul 2020
Other Beilstein-Institut Open Science Activities