Search results

Search for "thermoelectric" in Full Text gives 66 result(s) in Beilstein Journal of Nanotechnology.

Humidity-dependent electrical performance of CuO nanowire networks studied by electrochemical impedance spectroscopy

  • Jelena Kosmaca,
  • Juris Katkevics,
  • Jana Andzane,
  • Raitis Sondors,
  • Liga Jasulaneca,
  • Raimonds Meija,
  • Kiryl Niherysh,
  • Yelyzaveta Rublova and
  • Donats Erts

Beilstein J. Nanotechnol. 2023, 14, 683–691, doi:10.3762/bjnano.14.54

Graphical Abstract
  • nanowires in combination with good electrical conductivity and thermoelectric power reaching 500 µV/K enables their application as p-type components for environmentally friendly thermoelectric devices [3][4]. Investigating the influence of relative humidity (RH) and understanding conductivity mechanisms in
  • effect of humidity on dielectrophoretically assembled CuO nanowire network systems with multiple interconnects, which may become very advantageous for the scalable assembly of CuO nanowire-based devices as NEMS [5], sensors [2], and thermoelectric modules [4], is yet to be reported. In this work, CuO
  • the inconsistent humidity responses in CuO nanostructures and should be considered in further technological developments of CuO nanowire-based systems for sensing, nanoelectronic, and thermoelectric applications. Experimental CuO nanowires were synthesized on Cu foil substrates (GoodFellow, 99.9
PDF
Album
Full Research Paper
Published 05 Jun 2023

Carbon nanotube-cellulose ink for rapid solvent identification

  • Tiago Amarante,
  • Thiago H. R. Cunha,
  • Claudio Laudares,
  • Ana P. M. Barboza,
  • Ana Carolina dos Santos,
  • Cíntia L. Pereira,
  • Vinicius Ornelas,
  • Bernardo R. A. Neves,
  • André S. Ferlauto and
  • Rodrigo G. Lacerda

Beilstein J. Nanotechnol. 2023, 14, 535–543, doi:10.3762/bjnano.14.44

Graphical Abstract
  • sensing, as electromagnetic shielding, and as thermoelectric material [32][33][34][35][36][37][38]. Also, Qi et al. reported a liquid-water sensor based on carbon nanotube–cellulose composite films, and, more recently, Goodman et al. reported the scalable manufacturing of nanocomposites for liquid sensing
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2023

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • both metallic and semiconducting properties. These networks have been applied to thermoelectric materials and have been found to exhibit low interplane thermal conductivity, which is not typical of carbon materials, while maintaining the interplane electrical conductivity. Müllen, Fuchs, Chi, and co
PDF
Album
Review
Published 03 Apr 2023

Spin dynamics in superconductor/ferromagnetic insulator hybrid structures with precessing magnetization

  • Yaroslav V. Turkin and
  • Nataliya Pugach

Beilstein J. Nanotechnol. 2023, 14, 233–239, doi:10.3762/bjnano.14.22

Graphical Abstract
  • superconductor/ferromagnetic insulator hybrid structures was applied to describe nonstationary phenomena, such as generation of spin transfer torques, nonuniform thermoelectric effects, and domain wall movement. The theoretical description of the dynamic proximity effect is the more complex task because of the
PDF
Album
Full Research Paper
Published 21 Feb 2023

Density of states in the presence of spin-dependent scattering in SF bilayers: a numerical and analytical approach

  • Tairzhan Karabassov,
  • Valeriia D. Pashkovskaia,
  • Nikita A. Parkhomenko,
  • Anastasia V. Guravova,
  • Elena A. Kazakova,
  • Boris G. Lvov,
  • Alexander A. Golubov and
  • Andrey S. Vasenko

Beilstein J. Nanotechnol. 2022, 13, 1418–1431, doi:10.3762/bjnano.13.117

Graphical Abstract
  • studied areas of research, including the thermospin [59][60] and thermoelectric [61][62][63][64][65][66] effects, spin and heat valves [67][68][69][70][71][72][73][74][75], as well as nanoscale refrigerators [76][77][78]. Presently, the DOS structure at the free edge of a normal metal layer in NS bilayers
PDF
Album
Full Research Paper
Published 01 Dec 2022

Enhanced electronic transport properties of Te roll-like nanostructures

  • E. R. Viana,
  • N. Cifuentes and
  • J. C. González

Beilstein J. Nanotechnol. 2022, 13, 1284–1291, doi:10.3762/bjnano.13.106

Graphical Abstract
  • Earth’s crust and a well-known p-type and narrow-bandgap (≈0.35 eV at room temperature) semiconductor material. Tellurium is widely used in thermoelectric devices, piezoelectric devices, photoconductive devices, gas sensing, nonlinear optical devices, solar cells, photonic crystals, holographic recording
  • ) = 881 cm2/V·s) in these nanostructures. Thermoelectric devices, piezoelectric devices, photoconductive devices, gas sensing, solar cells, and field-effect transistors would have better performance if the mobility of charge carriers in the active region of the devices was greater. In addition, the low
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2022

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • . Different nanostructures also have an influence on the performance of MEGs, which is worth further investigation. Metal compound nanomaterials have been successfully used in many fields, such as optoelectronic, thermoelectric, and piezoelectric devices [56][57][58][59][60]. With the knowledge about
PDF
Album
Review
Published 25 Oct 2022

A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy

  • Hao Liu,
  • Zuned Ahmed,
  • Sasa Vranjkovic,
  • Manfred Parschau,
  • Andrada-Oana Mandru and
  • Hans J. Hug

Beilstein J. Nanotechnol. 2022, 13, 1120–1140, doi:10.3762/bjnano.13.95

Graphical Abstract
  • of 5 μm [54] delivering a maximum of 9.3 mW into the fiber at a drive current of 140 mA. To keep the temperature of the laser diode constant, it is mounted onto a Thorlabs TCLDM9 [55] thermoelectric cooler block, and the laser diode is operated at constant current. A combined laser diode and
PDF
Album
Full Research Paper
Published 11 Oct 2022

Experimental and theoretical study of field-dependent spin splitting at ferromagnetic insulator–superconductor interfaces

  • Peter Machon,
  • Michael J. Wolf,
  • Detlef Beckmann and
  • Wolfgang Belzig

Beilstein J. Nanotechnol. 2022, 13, 682–688, doi:10.3762/bjnano.13.60

Graphical Abstract
  • central for obtaining unprecedentedly high thermoelectric performance at low temperatures [19][20][21][22][23]. Ferromagnetic insulators such as EuO and EuS are interesting materials since they show ferromagnetism (they are almost ideal Heisenberg ferromagnets) but are electrically insulating at the same
PDF
Album
Full Research Paper
Published 20 Jul 2022

Chemical vapor deposition of germanium-rich CrGex nanowires

  • Vladislav Dřínek,
  • Stanislav Tiagulskyi,
  • Roman Yatskiv,
  • Jan Grym,
  • Radek Fajgar,
  • Věra Jandová,
  • Martin Koštejn and
  • Jaroslav Kupčík

Beilstein J. Nanotechnol. 2021, 12, 1365–1371, doi:10.3762/bjnano.12.100

Graphical Abstract
  • furnace. Cr11Ge19 belongs to the large family of compounds exhibiting a Nowotny chimney ladder crystal structure. Such materials have mostly significant thermoelectric properties [5]. CrGe superlattices in CrGe/FeGe and CrGe/Mn/Ge/FeGe systems were fabricated for advanced materials with tunable skyrmions
  • influence of the structure of the deposit on the NW growth. Although Cr/Ge possesses some advantageous thermoelectric properties, it seems that, currently, its magnetic behavior is more promising. Therefore, more electric and magnetic studies are needed. Germanium-rich Cr/Ge materials are regarded as
PDF
Album
Supp Info
Letter
Published 07 Dec 2021

First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications

  • Muhammad Atif Sattar,
  • Najwa Al Bouzieh,
  • Maamar Benkraouda and
  • Noureddine Amrane

Beilstein J. Nanotechnol. 2021, 12, 1101–1114, doi:10.3762/bjnano.12.82

Graphical Abstract
  • Abstract Tin selenide (SnSe) has thermoelectric (TE) and photovoltaic (PV) applications due to its exceptional advantages, such as the remarkable figure of merit (ZT ≈ 2.6 at 923 K) and excellent optoelectronic properties. In addition, SnSe is nontoxic, inexpensive, and relatively abundant. These aspects
  • make SnSe of great practical importance for the next generation of thermoelectric devices. Here, we report structural, optoelectronic, thermodynamic, and thermoelectric properties of the recently experimentally identified binary phase of tin monoselenide (π-SnSe) by using the density functional theory
  • (DFT). Our DFT calculations reveal that π-SnSe features an optical bandgap of 1.41 eV and has an exceptionally large lattice constant (12.2 Å, P213). We report several thermodynamic, optical, and thermoelectric properties of this π-SnSe phase for the first time. Our finding shows that the π-SnSe alloy
PDF
Album
Full Research Paper
Published 05 Oct 2021

A Au/CuNiCoS4/p-Si photodiode: electrical and morphological characterization

  • Adem Koçyiğit,
  • Adem Sarılmaz,
  • Teoman Öztürk,
  • Faruk Ozel and
  • Murat Yıldırım

Beilstein J. Nanotechnol. 2021, 12, 984–994, doi:10.3762/bjnano.12.74

Graphical Abstract
  • to their remarkable crystal, electric, thermoelectric, magnetic, and optical properties [6][7]. There are many studies on the usage of thiospinels in batteries, super-capacitors, and electrochemical reactions [8][9][10][11][12]. However, there are only two studies on the synthesis and application of
PDF
Album
Full Research Paper
Published 02 Sep 2021

Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization

  • Barbora Svitkova,
  • Vlasta Zavisova,
  • Veronika Nemethova,
  • Martina Koneracka,
  • Miroslava Kretova,
  • Filip Razga,
  • Monika Ursinyova and
  • Alena Gabelova

Beilstein J. Nanotechnol. 2021, 12, 270–281, doi:10.3762/bjnano.12.22

Graphical Abstract
  • ) equipped with a 4 mW helium/neon laser (λ = 633 nm) and a thermoelectric temperature controller at 37 °C. The characteristics of nanoparticles and culture medium have been published before [66][67]. Cell line A549 (ATCC® CCL-185™) cells were obtained from LambdaLife (Bratislava, Slovakia). The cells were
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2021

Kondo effects in small-bandgap carbon nanotube quantum dots

  • Patryk Florków,
  • Damian Krychowski and
  • Stanisław Lipiński

Beilstein J. Nanotechnol. 2020, 11, 1873–1890, doi:10.3762/bjnano.11.169

Graphical Abstract
  • success. The two physical quantities that are the object of our interest are linear conductance and thermoelectric power (TEP) . Both quantities can be determined from the transmissions, which, in turn, can be calculated from the knowledge of Green’s functions obtained in SBMFA or EOM: where fα(E) is
  • their electron or hole character within the shell is a linear thermoelectric coefficient of the thermopower defined as [74] where the Kondo temperature TK is given by the center and the width of the Kondo resonance, with where ls labels the dot states active in the Kondo processes [64]. Plots of are
  • fluctuations (Figure 7, Figure 5d). Other spin–orbital fluctuations, not related solely to active states in Kondo processes, weakly depend on the gate voltage and the value they take depends on the symmetry. Figure 6b shows the temperature dependencies of conduction, thermoelectric power, and the coefficient
PDF
Album
Full Research Paper
Published 23 Dec 2020

Seebeck coefficient of silicon nanowire forests doped by thermal diffusion

  • Shaimaa Elyamny,
  • Elisabetta Dimaggio and
  • Giovanni Pennelli

Beilstein J. Nanotechnol. 2020, 11, 1707–1713, doi:10.3762/bjnano.11.153

Graphical Abstract
  • Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt 10.3762/bjnano.11.153 Abstract Thermoelectric generators made by large arrays of nanowires perpendicular to a silicon substrate, that is, so-called silicon nanowire forests are fabricated on large areas by an inexpensive
  • conductivity of nanostructures, will yield a high efficiency of the conversion of thermal to electrical energy. Keywords: nanowires; Seebeck coefficient; thermal conductivity; thermoelectricity; Introduction Thermoelectric generators for direct conversion of heat into electrical power will certainly play a
  • decisive role in the next generation of energy harvesting and energy scavenging systems. However, a large-scale application of thermoelectric devices requires the development of materials that have good thermoelectric features and are, at the same time, of low cost, technologically affordable and
PDF
Album
Full Research Paper
Published 11 Nov 2020

Piezoelectric sensor based on graphene-doped PVDF nanofibers for sign language translation

  • Shuai Yang,
  • Xiaojing Cui,
  • Rui Guo,
  • Zhiyi Zhang,
  • Shengbo Sang and
  • Hulin Zhang

Beilstein J. Nanotechnol. 2020, 11, 1655–1662, doi:10.3762/bjnano.11.148

Graphical Abstract
  • membrane is encapsulated with PDMS. Thermoelectric test process: The PES unit is attached to a thin polyethylene plate and connected to the analogue signal test system via the copper wire electrodes. The surface of the plate heater is kept at a temperature of 50 °C. The polyethylene plate is fixed to a
PDF
Album
Full Research Paper
Published 02 Nov 2020

Wafer-level integration of self-aligned high aspect ratio silicon 3D structures using the MACE method with Au, Pd, Pt, Cu, and Ir

  • Mathias Franz,
  • Romy Junghans,
  • Paul Schmitt,
  • Adriana Szeghalmi and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2020, 11, 1439–1449, doi:10.3762/bjnano.11.128

Graphical Abstract
  • to fabricate high-efficiency solar cells [4][5]. These nanowire-based solar cells show a higher short circuit current and a higher quantum efficiency than planar cells [6]. Another energy conversion application for nanowires is a thermoelectric harvester. The one-dimensional structures reduce heat
  • transport and improve the efficiency of the thermoelectric generator [7]. Silicon nanowire arrays are also an emerging anode material for integrated lithium-ion batteries. They have a ten times higher theoretical capacity than graphite and can be used for cells with high energy density. However, these
PDF
Album
Full Research Paper
Published 23 Sep 2020

Analysis of catalyst surface wetting: the early stage of epitaxial germanium nanowire growth

  • Owen C. Ernst,
  • Felix Lange,
  • David Uebel,
  • Thomas Teubner and
  • Torsten Boeck

Beilstein J. Nanotechnol. 2020, 11, 1371–1380, doi:10.3762/bjnano.11.121

Graphical Abstract
  • microelectronic devices, such as energy conversion cells, FETs, or thermoelectric devices in which nanowires are used. Experimental Theory The ability of a fluid to disperse or form droplets on a substrate is related to the free energy, F(d), of the system, which depends on the layer thickness d: where F0 is the
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2020

Thermophoretic tweezers for single nanoparticle manipulation

  • Jošt Stergar and
  • Natan Osterman

Beilstein J. Nanotechnol. 2020, 11, 1126–1133, doi:10.3762/bjnano.11.97

Graphical Abstract
  • heating of a thermoplasmonic substrate causes a spatial separation of dissolved ions, generating a light-directed thermoelectric field, which allows for the manipulation of metal nanoparticles [27]. Recently Braun et al. [28][29][30] combined optical feedback and thermophoresis to create a “thermophoretic
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2020

Excitonic and electronic transitions in Me–Sb2Se3 structures

  • Nicolae N. Syrbu,
  • Victor V. Zalamai,
  • Ivan G. Stamov and
  • Stepan I. Beril

Beilstein J. Nanotechnol. 2020, 11, 1045–1053, doi:10.3762/bjnano.11.89

Graphical Abstract
  • costs [3][4][5][6][7][8][9][10]. It has been shown that Sb2Se3 has many applications in photovoltaic devices and thermoelectric systems where it can be used as a thin film [11], in thermovoltaic and switch devices [12], in optical data storage [13] and in optoelectronics as a 2D anisotropic material [14
PDF
Album
Full Research Paper
Published 16 Jul 2020

Light–matter interactions in two-dimensional layered WSe2 for gauging evolution of phonon dynamics

  • Avra S. Bandyopadhyay,
  • Chandan Biswas and
  • Anupama B. Kaul

Beilstein J. Nanotechnol. 2020, 11, 782–797, doi:10.3762/bjnano.11.63

Graphical Abstract
  • electronic, optoelectronic and thermoelectric devices in the future. Keywords: phonon concentration; phonon lifetime; Raman spectroscopy; thermal coefficients; Tungsten diselenide; two-dimensional material; Introduction Since the discovery of graphene, atomically thin two-dimensional layered materials have
  • , analysis of the phonon dynamics in 2D WSe2 will shed insights on the impact of self-heating effects in WSe2 to illustrate its utility in electronic, optoelectronic and thermoelectric device platforms in the future. In this work, we demonstrate that exposure to heat on the WSe2 crystallites as generated via
  • , will prove to be vital for truly harnessing the unique properties of WSe2 and designing high-performance electronic, optoelectronic, thermal, and thermoelectric devices from WSe2 in the future. Conclusion In conclusion, we report, the dependence of the Raman and PL of 1L, ML and bulk WSe2 by external
PDF
Album
Supp Info
Full Research Paper
Published 12 May 2020

Nonequilibrium Kondo effect in a graphene-coupled quantum dot in the presence of a magnetic field

  • Levente Máthé and
  • Ioan Grosu

Beilstein J. Nanotechnol. 2020, 11, 225–239, doi:10.3762/bjnano.11.17

Graphical Abstract
  • graphene triple QDs [89] in the Coulomb blockade regime. The literature concerning transport phenomena in graphene-based QDs described by the pseudogap Anderson model is limited. There are a few theoretical reports based on NCA calculations, which describe the thermoelectric characteristics of a strongly
  • Kondo temperature. In a recent study, the thermoelectric properties of a noninteracting QD coupled to massless Dirac fermions have been analyzed using the EOM technique [38]. At low temperature, by tuning the voltage of the metallic gate electrode, this QD system reaches large values of thermopower and
  • figure of merit. Moreover, the thermoelectric properties of a single QD connected to graphene electrodes have been studied within the framework of the Hartree–Fock approximation using the EOM technique, focusing on the Coulomb blockade regime [39]. It was established that the Wiedemann–Franz law is not
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2020

Improvement of the thermoelectric properties of a MoO3 monolayer through oxygen vacancies

  • Wenwen Zheng,
  • Wei Cao,
  • Ziyu Wang,
  • Huixiong Deng,
  • Jing Shi and
  • Rui Xiong

Beilstein J. Nanotechnol. 2019, 10, 2031–2038, doi:10.3762/bjnano.10.199

Graphical Abstract
  • , China 10.3762/bjnano.10.199 Abstract We have investigated the thermoelectric properties of a pristine MoO3 monolayer and its defective structures with different oxygen vacancies using first-principles methods combined with Boltzmann transport theory. Our results show that the thermoelectric properties
  • of the MoO3 monolayer exhibit an evident anisotropic behavior which is caused by the similar anisotropy of the electrical and thermal conductivity. The thermoelectric materials figure of merit (ZT) value along the x- and the y-axis is 0.72 and 0.08 at 300 K, respectively. Moreover, the creation of
  • calculations; molybdenum trioxides; MoO3 monolayer; oxygen vacancies; thermoelectric properties; Introduction Thermoelectric materials that can directly convert temperature gradients to voltage gradients and vice versa provide a valid strategy to mitigate the global energy crisis. Owing to the unique ability
PDF
Album
Supp Info
Full Research Paper
Published 25 Oct 2019

First principles modeling of pure black phosphorus devices under pressure

  • Ximing Rong,
  • Zhizhou Yu,
  • Zewen Wu,
  • Junjun Li,
  • Bin Wang and
  • Yin Wang

Beilstein J. Nanotechnol. 2019, 10, 1943–1951, doi:10.3762/bjnano.10.190

Graphical Abstract
  • electronic properties [3][4][5][6], optical spectra [7][8][9][10], excitons [11][12][13], quantum transport [14][15][16][17][18], plasmons [5][19], thermoelectric effects [20][21], and superconductivity [22][23][24] of BP. One of the most promising applications of BP at the industrial level is expected to be
PDF
Album
Full Research Paper
Published 24 Sep 2019

Remarkable electronic and optical anisotropy of layered 1T’-WTe2 2D materials

  • Qiankun Zhang,
  • Rongjie Zhang,
  • Jiancui Chen,
  • Wanfu Shen,
  • Chunhua An,
  • Xiaodong Hu,
  • Mingli Dong,
  • Jing Liu and
  • Lianqing Zhu

Beilstein J. Nanotechnol. 2019, 10, 1745–1753, doi:10.3762/bjnano.10.170

Graphical Abstract
  • and Opto-Electronics Engineering, Tianjin University, 92 Weijin road, Tianjin 300072, China 10.3762/bjnano.10.170 Abstract Anisotropic 2D materials exhibit novel optical, electrical and thermoelectric properties that open possibilities for a great variety of angle-dependent devices. Recently
PDF
Album
Correction
Full Research Paper
Published 20 Aug 2019
Other Beilstein-Institut Open Science Activities