Search results

Search for "ultra high vacuum" in Full Text gives 99 result(s) in Beilstein Journal of Nanotechnology.

Cubic chemically ordered FeRh and FeCo nanomagnets prepared by mass-selected low-energy cluster-beam deposition: a comparative study

  • Veronique Dupuis,
  • Anthony Robert,
  • Arnaud Hillion,
  • Ghassan Khadra,
  • Nils Blanc,
  • Damien Le Roy,
  • Florent Tournus,
  • Clement Albin,
  • Olivier Boisron and
  • Alexandre Tamion

Beilstein J. Nanotechnol. 2016, 7, 1850–1860, doi:10.3762/bjnano.7.177

Graphical Abstract
  • equiatomic target while a continuous flow of helium allows the formation of the cluster beam. After isentropic expansion in vacuum, ionized species can be size-selected thanks to a quadupolar electrostatic deviator [4].Then, the mass-selected clusters are simultaneously co-deposited in an ultra-high vacuum
  • ) as shown in Figure 3c. In all cases, the EDX analysis showed no sign of oxidation of the nanoparticles and a roughly equiatomic composition for both FeRh and FeCo cluster samples conserved after 2 h annealing at 500 °C under ultra-high vacuum (UHV) conditions [10][11]. High-resolution TEM (HRTEM
PDF
Album
Full Research Paper
Published 28 Nov 2016

High performance Ce-doped ZnO nanorods for sunlight-driven photocatalysis

  • Bilel Chouchene,
  • Tahar Ben Chaabane,
  • Lavinia Balan,
  • Emilien Girot,
  • Kevin Mozet,
  • Ghouti Medjahdi and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2016, 7, 1338–1349, doi:10.3762/bjnano.7.125

Graphical Abstract
  • spectrometer under ultra-high vacuum (P < 10−9 mbar). The measurements were performed at normal incidence (the sample plane is perpendicular to the emission angle). The spectrometer resolution at the Fermi level is about 0.4 eV. The depth analyzed extends up to about 8 nm. The monochromatized Al Kα source
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2016

Customized MFM probes with high lateral resolution

  • Óscar Iglesias-Freire,
  • Miriam Jaafar,
  • Eider Berganza and
  • Agustina Asenjo

Beilstein J. Nanotechnol. 2016, 7, 1068–1074, doi:10.3762/bjnano.7.100

Graphical Abstract
  • -high-vacuum (UHV) conditions, as it prevents the tip from tapping the sample surface and helps preserving its sharpness. In the last row, data from a custom-made probe with a one-sided Co coating of 25 nm are shown. Having a look at the column on the left, where (2 × 2) μm2 images are displayed, an
  • high resolution magnetic force microscopy measurements (with a nominal resolution of 25 nm). These tips with high aspect ratio are particularly suitable for single-pass non-contact MFM [28], a mode that becomes particularly useful when measuring soft magnetic samples with very flat surfaces under ultra
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2016

Role of solvents in the electronic transport properties of single-molecule junctions

  • Katharina Luka-Guth,
  • Sebastian Hambsch,
  • Andreas Bloch,
  • Philipp Ehrenreich,
  • Bernd Michael Briechle,
  • Filip Kilibarda,
  • Torsten Sendler,
  • Dmytro Sysoiev,
  • Thomas Huhn,
  • Artur Erbe and
  • Elke Scheer

Beilstein J. Nanotechnol. 2016, 7, 1055–1067, doi:10.3762/bjnano.7.99

Graphical Abstract
  • rinsing in IPA, the patterned samples are mounted in an electron-beam evaporator of ultra-high vacuum (10−9 mbar) and gold of about 80 nm thickness is deposited at a rate of 1 Å/s. After lift-off, the polyimide layer is partially etched away (thickness reduction ca. 700 nm) by employing O2 plasma in the
PDF
Album
Full Research Paper
Published 22 Jul 2016

Understanding interferometry for micro-cantilever displacement detection

  • Alexander von Schmidsfeld,
  • Tobias Nörenberg,
  • Matthias Temmen and
  • Michael Reichling

Beilstein J. Nanotechnol. 2016, 7, 841–851, doi:10.3762/bjnano.7.76

Graphical Abstract
  • ) operated in ultra-high vacuum is demonstrated for the Michelson and Fabry–Pérot modes of operation. Each mode is addressed by appropriately adjusting the distance between the fiber end delivering and collecting light and a highly reflective micro-cantilever, both together forming the interferometric cavity
  • of the cantilever, as well as on the noise floor of the deflection measurement. Experimental Experiments are performed with a NC-AFM body operated in an ultra-high vacuum (UHV) environment with a base pressure of 3 × 10−11 mbar. The main components of the interferometer are shown in Figure 1, while
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2016

Length-extension resonator as a force sensor for high-resolution frequency-modulation atomic force microscopy in air

  • Hannes Beyer,
  • Tino Wagner and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2016, 7, 432–438, doi:10.3762/bjnano.7.38

Graphical Abstract
  • limited to ultra-high vacuum conditions and cryogenic temperatures. Measurements under ambient conditions are influenced by variations of the dew point and thin water layers present on practically every surface, complicating stable imaging with high resolution. We demonstrate high-resolution imaging in
  • -high vacuum (UHV), it remains a challenge under ambient conditions. However, imaging samples in their natural environment down to the atomic level is key to understanding their properties. Several factors such as contamination of the surface, environmental changes, and water layers on the surface
  • ; frequency-modulation atomic force microscopy; high-resolution; length-extension resonator; Introduction Frequency-modulated atomic force microscopy (FM-AFM) is the method of choice to image nanoscale structures on surfaces down to the atomic level. Whereas atomic resolution is routinely achieved in ultra
PDF
Album
Full Research Paper
Published 15 Mar 2016

Case studies on the formation of chalcogenide self-assembled monolayers on surfaces and dissociative processes

  • Yongfeng Tong,
  • Tingming Jiang,
  • Azzedine Bendounan,
  • Makri Nimbegondi Kotresh Harish,
  • Angelo Giglia,
  • Stefan Kubsky,
  • Fausto Sirotti,
  • Luca Pasquali,
  • Srinivasan Sampath and
  • Vladimir A. Esaulov

Beilstein J. Nanotechnol. 2016, 7, 263–277, doi:10.3762/bjnano.7.24

Graphical Abstract
  • diffraction (LEED). The prepared samples were extracted from the ultra-high vacuum preparation chamber under N2 flow and immediately immersed into the solutions. Thereafter, they were rinsed in the corresponding solvents and dried by N2 gas. The samples were then immediately transferred into the analysis
PDF
Album
Supp Info
Full Research Paper
Published 17 Feb 2016

Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices

  • Urs Gysin,
  • Thilo Glatzel,
  • Thomas Schmölzer,
  • Adolf Schöner,
  • Sergey Reshanov,
  • Holger Bartolf and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2015, 6, 2485–2497, doi:10.3762/bjnano.6.258

Graphical Abstract
  • characterization of conducting or semiconducting power devices with EFM methods requires an accurate and reliable technique from the nanometre up to the micrometre scale. For high force sensitivity it is indispensable to operate the microscope under high to ultra-high vacuum (UHV) conditions to suppress viscous
  • molecules in ultra-high vacuum (UHV) conditions but also in areas which face the characterization of semiconductor devices. The common technical principle is always related to a conical tip attached to a cantilever which is accurately positioned at the specimen of interest and which is scanned over a
  • their detailed inspection by KPFM is only feasible due to the implemented large scan range unit. Experimental The atomic force microscope (AFM) [24] developed and built in our physics department is placed in an ultra-high vacuum (UHV) system with a base pressure of <10−9 mbar. Operating the instrument
PDF
Album
Full Research Paper
Published 28 Dec 2015

Sub-monolayer film growth of a volatile lanthanide complex on metallic surfaces

  • Hironari Isshiki,
  • Jinjie Chen,
  • Kevin Edelmann and
  • Wulf Wulfhekel

Beilstein J. Nanotechnol. 2015, 6, 2412–2416, doi:10.3762/bjnano.6.248

Graphical Abstract
  • molecule deposition and Ar sputtering were done in ultra-high vacuum conditions (≈10−10 mbar). The Tb(thd)3 compound of 99% purity was purchased from Alfa Aesar and degassing was carefully performed by heating to ≈325 K in a ceramic crucible for hours prior to evaporation. The Cu(111), Ag(111) and Au(111
PDF
Album
Full Research Paper
Published 16 Dec 2015

Self-organization of gold nanoparticles on silanated surfaces

  • Htet H. Kyaw,
  • Salim H. Al-Harthi,
  • Azzouz Sellai and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2015, 6, 2345–2353, doi:10.3762/bjnano.6.242

Graphical Abstract
  • the glass substrates were rinsed with DI water and dried with N2 gas stream and stored in a desiccator until further use. High-temperature annealing of AuNPs deposited on glass substrates under vacuum and air. For annealing in vacuum, samples were heated in ultra-high vacuum (10−9 mbar) environment at
PDF
Album
Full Research Paper
Published 10 Dec 2015

Kelvin probe force microscopy for local characterisation of active nanoelectronic devices

  • Tino Wagner,
  • Hannes Beyer,
  • Patrick Reissner,
  • Philipp Mensch,
  • Heike Riel,
  • Bernd Gotsmann and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2015, 6, 2193–2206, doi:10.3762/bjnano.6.225

Graphical Abstract
  • amplitude A and the peak frequency deviation , a frequency modulation at ωm produces two sidebands with amplitudes βA/2, where is the modulation index [23]. Under ultra-high vacuum conditions, large Q factors typically cause negligible cantilever bandwidths, making this approximation valid, e.g., for
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2015

Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules

  • Philipp Leinen,
  • Matthew F. B. Green,
  • Taner Esat,
  • Christian Wagner,
  • F. Stefan Tautz and
  • Ruslan Temirov

Beilstein J. Nanotechnol. 2015, 6, 2148–2153, doi:10.3762/bjnano.6.220

Graphical Abstract
  • commercial, combined qPlus tuning fork [4] non-contact atomic force/scanning tunnelling microscope (NC-AFM/STM) operated at 5 K under ultra-high vacuum conditions. Each extraction attempt started with positioning the tip over one of the four carboxylic oxygen atoms (marked by red circles in Figure 1) of the
PDF
Album
Supp Info
Full Research Paper
Published 16 Nov 2015

Distribution of Pd clusters on ultrathin, epitaxial TiOx films on Pt3Ti(111)

  • Christian Breinlich,
  • Maria Buchholz,
  • Marco Moors,
  • Tobias Pertram,
  • Conrad Becker and
  • Klaus Wandelt

Beilstein J. Nanotechnol. 2015, 6, 2007–2014, doi:10.3762/bjnano.6.204

Graphical Abstract
  • a 0.5 mm tungsten wire and cleaned under ultra-high vacuum (UHV) conditions using voltage pulses of 10 ms duration between −10 and +10 V. The STM data were analysed with the WSxM freeware program [17]. The (111)-oriented Pt3Ti crystal was purchased from MaTeck (Jülich, Germany) and cleaned using
PDF
Album
Full Research Paper
Published 09 Oct 2015

Electrospray deposition of organic molecules on bulk insulator surfaces

  • Antoine Hinaut,
  • Rémy Pawlak,
  • Ernst Meyer and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2015, 6, 1927–1934, doi:10.3762/bjnano.6.195

Graphical Abstract
  • electronics. Knowing their adsorption geometries and electronic structures allows to design and predict macroscopic device properties. Fundamental investigations in ultra-high vacuum (UHV) are thus mandatory to analyze and engineer processes in this prospects. With increasing size, complexity or chemical
  • molecules; non-contact AFM; ultra-high vacuum (UHV); Introduction Large complex molecules with tunable electronic properties are building block candidates for functional materials with special electrochemical and photophysical properties, which are of fundamental interest for many applications such as
  • necessary and therefore ultra-high vacuum (UHV) conditions are required for these fundamental studies. However, thermal evaporation, the most commonly employed technique under UHV conditions, may lead to a fragmentation of large molecules generally happening before reaching the sublimation temperature
PDF
Album
Full Research Paper
Published 18 Sep 2015

The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors

  • Rachel M. Thorman,
  • Ragesh Kumar T. P.,
  • D. Howard Fairbrother and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2015, 6, 1904–1926, doi:10.3762/bjnano.6.194

Graphical Abstract
  • be used to elucidate their role. In this context, gas phase studies can obtain well-resolved information on low-energy electron-induced reactions with FEBID precursors by studying isolated molecules interacting with single electrons of well-defined energy. In contrast, ultra-high vacuum surface
PDF
Album
Review
Published 16 Sep 2015

Lower nanometer-scale size limit for the deformation of a metallic glass by shear transformations revealed by quantitative AFM indentation

  • Arnaud Caron and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2015, 6, 1721–1732, doi:10.3762/bjnano.6.176

Graphical Abstract
  • Abstract We combine non-contact atomic force microscopy (AFM) imaging and AFM indentation in ultra-high vacuum to quantitatively and reproducibly determine the hardness and deformation mechanisms of Pt(111) and a Pt57.5Cu14.7Ni5.3P22.5 metallic glass with unprecedented spatial resolution. Our results on
  • of 1 Å and less. These observations demonstrate the potential of AFM indentation to detect atomistic plasticity events. Here we present the results of AFM indentation in ultra-high vacuum to quantitatively determine hardness and the underlying fundamental mechanisms of plastic deformation of
  • nanometer-scale plastic deformation of Pt(111) and the Pt57.5Cu14.7Ni5.3P22.5 metallic glass was investigated in ultra-high vacuum by AFM indentation and subsequent nc-AFM imaging using a VT-AFM manufactured by Omicron Nanotechnology GmbH, Germany. In non-contact AFM an AFM cantilever is driven to oscillate
PDF
Album
Full Research Paper
Published 13 Aug 2015

Transformations of PTCDA structures on rutile TiO2 induced by thermal annealing and intermolecular forces

  • Szymon Godlewski,
  • Jakub S. Prauzner-Bechcicki,
  • Thilo Glatzel,
  • Ernst Meyer and
  • Marek Szymoński

Beilstein J. Nanotechnol. 2015, 6, 1498–1507, doi:10.3762/bjnano.6.155

Graphical Abstract
  • performed in an ultra-high vacuum (UHV) system containing preparation, analytical, radial distribution and microscope chambers. In the experiments, a commercially available variable-temperature STM (VT-STM), manufactured by Omicron Nanotechnology GmbH, was used. The base pressure in the UHV system was in
PDF
Album
Full Research Paper
Published 10 Jul 2015

Improved atomic force microscopy cantilever performance by partial reflective coating

  • Zeno Schumacher,
  • Yoichi Miyahara,
  • Laure Aeschimann and
  • Peter Grütter

Beilstein J. Nanotechnol. 2015, 6, 1450–1456, doi:10.3762/bjnano.6.150

Graphical Abstract
  • desired to achieve a lower minimal detectable force gradient. By using a cantilever in an ultra high vacuum environment (UHV), the Q-factor is drastically increased due to the absence of damping by air atmosphere and is limited by the intrinsic properties of the cantilever. It is known that adding a metal
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2015

Enhanced fullerene–Au(111) coupling in (2√3 × 2√3)R30° superstructures with intermolecular interactions

  • Michael Paßens,
  • Rainer Waser and
  • Silvia Karthäuser

Beilstein J. Nanotechnol. 2015, 6, 1421–1431, doi:10.3762/bjnano.6.147

Graphical Abstract
  • commercial Createc STM (Germany) operated in ultra-high vacuum (UHV) with a base pressure of 1 × 10−10 mbar. All STM images were obtained in constant-current mode at 77 K sample temperature using a custom-made electrochemically etched tungsten tips. The dI/dV spectra were recorded through lock-in detection
PDF
Album
Full Research Paper
Published 29 Jun 2015

Magnetic properties of iron cluster/chromium matrix nanocomposites

  • Arne Fischer,
  • Robert Kruk,
  • Di Wang and
  • Horst Hahn

Beilstein J. Nanotechnol. 2015, 6, 1158–1163, doi:10.3762/bjnano.6.117

Graphical Abstract
  • clusters of basically any element and many alloy systems and their transfer into an ultra-high vacuum system (UHV). The deposition of the charged clusters onto substrates can be performed with variable impact energies. Such a process opens a new way for the synthesis of cluster-based alloys, i.e
PDF
Album
Letter
Published 13 May 2015

Closed-loop conductance scanning tunneling spectroscopy: demonstrating the equivalence to the open-loop alternative

  • Chris Hellenthal,
  • Kai Sotthewes,
  • Martin H. Siekman,
  • E. Stefan Kooij and
  • Harold J. W. Zandvliet

Beilstein J. Nanotechnol. 2015, 6, 1116–1124, doi:10.3762/bjnano.6.113

Graphical Abstract
  • factor γ has a positive impact on both the quality of the numerical fits as well as the values obtained from them. The exact physical origin of this term is, as of yet, unknown. Experimental Experiments were performed on an RHK ultra-high vacuum system at room temperature and a base pressure of 10−10
  • mbar. Measurement data was collected on a hydrogen flame-annealed Au(111) sample by using an electrochemically etched W tip. The sample and tip had both been exposed to ultra-high vacuum conditions for several weeks prior to measuring. Spectroscopy traces were acquired by using an RHK IVP-200
PDF
Album
Supp Info
Full Research Paper
Published 06 May 2015

Charge carrier mobility and electronic properties of Al(Op)3: impact of excimer formation

  • Andrea Magri,
  • Pascal Friederich,
  • Bernhard Schäfer,
  • Valeria Fattori,
  • Xiangnan Sun,
  • Timo Strunk,
  • Velimir Meded,
  • Luis E. Hueso,
  • Wolfgang Wenzel and
  • Mario Ruben

Beilstein J. Nanotechnol. 2015, 6, 1107–1115, doi:10.3762/bjnano.6.112

Graphical Abstract
  • -modified substrate in a ultra-high vacuum evaporator (a dual chamber, Theva system). The Al(Op)3-based TFTs were characterized in a Lake Shore probe station with a Keithley 4200 semiconductor characterization system. All the TFT electrical measurements were carried out under vacuum at room temperature and
PDF
Album
Full Research Paper
Published 05 May 2015

Graphene on SiC(0001) inspected by dynamic atomic force microscopy at room temperature

  • Mykola Telychko,
  • Jan Berger,
  • Zsolt Majzik,
  • Pavel Jelínek and
  • Martin Švec

Beilstein J. Nanotechnol. 2015, 6, 901–906, doi:10.3762/bjnano.6.93

Graphical Abstract
  • The experiments were performed in an ultra-high vacuum (UHV) environment with a base pressure not exceeding 1 × 10 −10 mbar. N-doped Si-face 6H-SiC(0001) wafers purchased from CREE Inc., were cut into 3 mm × 10 mm stripes and mounted onto sample holders constructed for a direct-current sample heating
PDF
Album
Full Research Paper
Published 07 Apr 2015

Stick–slip behaviour on Au(111) with adsorption of copper and sulfate

  • Nikolay Podgaynyy,
  • Sabine Wezisla,
  • Christoph Molls,
  • Shahid Iqbal and
  • Helmut Baltruschat

Beilstein J. Nanotechnol. 2015, 6, 820–830, doi:10.3762/bjnano.6.85

Graphical Abstract
  • under ultra high vacuum (UHV) conditions: simply by varying the potential of the working electrode, the electrode surface can quickly and reversibly be modified by adsorption of a foreign metal or other substances, while the degree of unwanted contamination can be kept as low as under UHV conditions
PDF
Album
Full Research Paper
Published 26 Mar 2015

Magnetic properties of self-organized Co dimer nanolines on Si/Ag(110)

  • Lisa Michez,
  • Kai Chen,
  • Fabien Cheynis,
  • Frédéric Leroy,
  • Alain Ranguis,
  • Haik Jamgotchian,
  • Margrit Hanbücken and
  • Laurence Masson

Beilstein J. Nanotechnol. 2015, 6, 777–784, doi:10.3762/bjnano.6.80

Graphical Abstract
  • achieved for the upper Co layers, allowing for the characterization of their intrinsic properties. Experimental All experiments were performed in situ in ultra high vacuum (UHV, base pressure, 10−10 Torr). The STM images and LEED patterns were recorded at the CINaM in Marseille using an Omicron
PDF
Album
Full Research Paper
Published 19 Mar 2015
Other Beilstein-Institut Open Science Activities