Search results

Search for "wetting" in Full Text gives 168 result(s) in Beilstein Journal of Nanotechnology.

Experimental techniques for the characterization of carbon nanoparticles – a brief overview

  • Wojciech Kempiński,
  • Szymon Łoś,
  • Mateusz Kempiński and
  • Damian Markowski

Beilstein J. Nanotechnol. 2014, 5, 1760–1766, doi:10.3762/bjnano.5.186

Graphical Abstract
  • the CN size [40][41]. Water seems to cause a slightly larger shrinkage of the CNs than CCl4, probably due to the large difference in wetting of graphitic pore walls by both liquids. The wetting in porous materials is commonly described with the microscopic wetting parameter α [42], which shows the
  • interplay between the interactions within the liquid and of the liquid within the pore walls. The wetting parameter is given as: where c is a constant that comprises the parameters related to the structure of the pore walls and ε is the energy parameter in the Lennard–Jones potential, where the index fw
PDF
Album
Review
Published 13 Oct 2014

Surface topography and contact mechanics of dry and wet human skin

  • Alexander E. Kovalev,
  • Kirstin Dening,
  • Bo N. J. Persson and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 1341–1348, doi:10.3762/bjnano.5.147

Graphical Abstract
  • cellulose fibers. In fact, cellulose fibers exhibit elastoplastic properties very similar to the stratum corneum: Both absorb water strongly and swell by wetting, both have elastic moduli of the order of 10 MPa in the wet state and of the order of 1 GPa in the dry state [11]. The swelling (and elastic
  • 0.8 cm/s and a normal load of 0.5 N during wetting/drying. Adopted from [3] with the permission of the authors. The ratio of the contact area A to the area of the nominal contact area A0 as a function of the lower scale magnification ζ included in the calculation in a log10–log10 scale. The blue and
PDF
Album
Full Research Paper
Published 22 Aug 2014

Organic and inorganic–organic thin film structures by molecular layer deposition: A review

  • Pia Sundberg and
  • Maarit Karppinen

Beilstein J. Nanotechnol. 2014, 5, 1104–1136, doi:10.3762/bjnano.5.123

Graphical Abstract
PDF
Album
Review
Published 22 Jul 2014

The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review

  • Yunlu Pan,
  • Bharat Bhushan and
  • Xuezeng Zhao

Beilstein J. Nanotechnol. 2014, 5, 1042–1065, doi:10.3762/bjnano.5.117

Graphical Abstract
  • The drag of fluid flow at the solid–liquid interface in the micro/nanoscale is an important issue in micro/nanofluidic systems. Drag depends on the surface wetting, nanobubbles, surface charge and boundary slip. Some researchers have focused on the relationship between these interface properties. In
  • force on the probe were measured on an octadecyltrichlorosilane (OTS) surface with applied voltage. The influence of the surface charge on the boundary slip and drag of fluid flow has been discussed. Finally, the influence of the applied voltage on the surface wetting, nanobubbles, surface charge
  • liquid, surface wetting, surface charge, nanobubbles and boundary slip are believed to affect the drag of liquid flow [3][4][5][6][7][8][9][10]. By applying a voltage to the system, the surface wettability can be changed, known as electrowetting, and the surface charge density can be changed as well [11
PDF
Album
Review
Published 15 Jul 2014

Insect attachment on crystalline bioinspired wax surfaces formed by alkanes of varying chain lengths

  • Elena Gorb,
  • Sandro Böhm,
  • Nadine Jacky,
  • Louis-Philippe Maier,
  • Kirstin Dening,
  • Sasha Pechook,
  • Boaz Pokroy and
  • Stanislav Gorb

Beilstein J. Nanotechnol. 2014, 5, 1031–1041, doi:10.3762/bjnano.5.116

Graphical Abstract
  • direction. CW, claw; T1, first proximal tarsomere; T2, second proximal tarsomere. Scale bars = 500 μm (a), 20 μm (d,e), 10 μm (b,c). Adapted from [52]. Morphometrical variables of crystals, surface roughness, and wetting properties of wax samples.a Results of statistical analyses (Tukey test performed after
PDF
Album
Full Research Paper
Published 14 Jul 2014

Direct observation of microcavitation in underwater adhesion of mushroom-shaped adhesive microstructure

  • Lars Heepe,
  • Alexander E. Kovalev and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 903–909, doi:10.3762/bjnano.5.103

Graphical Abstract
  • , M.; Gorb, S. J. R. Soc., Interface 2008, 5, 383–385] proposed to explain the strong underwater adhesion of mushroom-shaped adhesive microstructures (MSAMSs). For this purpose, we measured the pull-off forces of individual MSAMSs by detaching them from a glass substrate under different wetting
  • smooth glass slide under different wetting conditions with simultaneous video recording of the failure dynamics with a setup similar to a reflection interference contrast microscope (RICM) [23][24]. Individual MSAMSs were cut off from the microstructured tape made from polyvinylsiloxane (PVS) with a
  • retraction velocity of 10 µm/s in the direction normal to the surface of the glass slide. In order to test the cavitation hypothesis, pull-off forces were measured at detachment on individual MSAMS samples under different wetting conditions. For sample 1, the following measurement sequence was performed: 1
PDF
Album
Full Research Paper
Published 25 Jun 2014

Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces

  • Matthias J. Mayser,
  • Holger F. Bohn,
  • Meike Reker and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2014, 5, 812–821, doi:10.3762/bjnano.5.93

Graphical Abstract
  • of the surface structures (Cassie–Baxter wetting state) [13]. The contact angle of water droplets can be equally high in both wetting states [14][15]. However, in the Wenzel wetting state the water is in full contact with the surface and individual droplets adhere firmly [16]. In contrast to this in
  • the Cassie wetting state the solid–water interface is strongly reduced while the majority of the interface is between water and air, thereby trapping an air layer between water and surface. As a result the adhesion of the water to the surface is minimised and individual droplets often roll off at very
  • low tilting angles. However for true and persisting superhydrophobicity the Cassie wetting state has to be stable, i.e., no wetting transitions should occur [17][18]. One effective solution to prevent wetting transitions are surfaces with multiscale roughness [19][20][21]. Recently potential
PDF
Album
Full Research Paper
Published 10 Jun 2014

The surface microstructure of cusps and leaflets in rabbit and mouse heart valves

  • Xia Ye,
  • Bharat Bhushan,
  • Ming Zhou and
  • Weining Lei

Beilstein J. Nanotechnol. 2014, 5, 622–629, doi:10.3762/bjnano.5.73

Graphical Abstract
  • constructed on the artifical heart valve’s surface. Then theoretically predicted formulas of the apparent contact angles on such surfaces have been deduced from classical wetting theories. Next the proper geometric parameters of the microstructures that indirectly control the difference of the apparent
PDF
Album
Full Research Paper
Published 13 May 2014
Graphical Abstract
  • constraints. This constitutes a continuum model for a contact immersed in a strongly wetting fluid, which can only be squeezed out in the center of the contact through a sufficiently large normal load FN. As for positive work of adhesion, two stable solutions can coexist in a finite range of normal loads. The
  • competing solutions can be readily interpreted as contacts with either a load-bearing or a squeezed-out fluid. The possibility for coexistence and the subsequent discontinuous wetting and squeeze-out instabilities depend not only on the Tabor coefficient μT but also on the functional form of the finite
  • -range repulsion. For example, coexistence and discontinuous wetting or squeeze-out do not occur when the repulsion decreases exponentially with distance. For positive work of adhesion, the normal displacement mainly depends on FN, Δγ, and μT but – unlike the contact area – barely on the functional form
PDF
Album
Full Research Paper
Published 08 Apr 2014

Exploring the retention properties of CaF2 nanoparticles as possible additives for dental care application with tapping-mode atomic force microscope in liquid

  • Matthias Wasem,
  • Joachim Köser,
  • Sylvia Hess,
  • Enrico Gnecco and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2014, 5, 36–43, doi:10.3762/bjnano.5.4

Graphical Abstract
  • particles. This correlation between energy dissipation and deflection angle was observed for all three kinds of nanoparticles investigated. Manipulation experiments in liquid have the advantage, compared to measurements in ambient, that the retention of adsorbed particles in not dominated by the wetting
PDF
Album
Full Research Paper
Published 13 Jan 2014

AFM as an analysis tool for high-capacity sulfur cathodes for Li–S batteries

  • Renate Hiesgen,
  • Seniz Sörgel,
  • Rémi Costa,
  • Linus Carlé,
  • Ines Galm,
  • Natalia Cañas,
  • Brigitta Pascucci and
  • K. Andreas Friedrich

Beilstein J. Nanotechnol. 2013, 4, 611–624, doi:10.3762/bjnano.4.68

Graphical Abstract
  • significantly upon 50 cycles as measured by AFM. Differences in transient current and steady-state current indicate the existence of disadvantageously large sulfur particles with thin carbon layers on top. An incomplete wetting of sulfur particles by carbon was also observed by AFM. Another observation was that
PDF
Album
Full Research Paper
Published 04 Oct 2013

Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport

  • Pavel V. Komarov,
  • Pavel G. Khalatur and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2013, 4, 567–587, doi:10.3762/bjnano.4.65

Graphical Abstract
  • functional groups (Figure 1a). The backbone of Nafion is similar to that of common Teflon [poly(tetrafluoroethylene)] showing pronounced hydrophobic properties. (Teflon is not only insoluble in water but even not wetting with water.) On the contrary, the polar sulfonic acid groups SO3H are strongly
PDF
Album
Full Research Paper
Published 26 Sep 2013

Porous polymer coatings as substrates for the formation of high-fidelity micropatterns by quill-like pens

  • Michael Hirtz,
  • Marcus Lyon,
  • Wenqian Feng,
  • Andrea E. Holmes,
  • Harald Fuchs and
  • Pavel A. Levkin

Beilstein J. Nanotechnol. 2013, 4, 377–384, doi:10.3762/bjnano.4.44

Graphical Abstract
  • prevented the SPT from touching the surface in some places) and because of inhomogeneous wetting behaviour due to the fibrous structure of the paper, as seen by sometimes brighter and sometimes fainter features. Overall the rough surface structure prevents clear homogenous patterning of phloxine B, and
  • effective in paper-based microfluidics [3]. Patterning on nylon membranes (Figure 4b and Figure 4f) shows a uniform wetting behaviour over the whole substrate area (visible by equal fluorescence intensity in the different features). However, similar distortions, as seen on the paper substrate, caused by the
PDF
Album
Supp Info
Video
Full Research Paper
Published 19 Jun 2013

Near-field effects and energy transfer in hybrid metal-oxide nanostructures

  • Ulrich Herr,
  • Balati Kuerbanjiang,
  • Cahit Benel,
  • Giorgos Papageorgiou,
  • Manuel Goncalves,
  • Johannes Boneberg,
  • Paul Leiderer,
  • Paul Ziemann,
  • Peter Marek and
  • Horst Hahn

Beilstein J. Nanotechnol. 2013, 4, 306–317, doi:10.3762/bjnano.4.34

Graphical Abstract
  • from the simulations. In principle, the observations may be explained by inhomogeneities in the phosphor layer thickness, which might be associated with local variations of the wetting behavior caused by the Ag nanoantennas. Another possible explanation is a quenching of the excitation at the metallic
PDF
Album
Full Research Paper
Published 14 May 2013

Selective surface modification of lithographic silicon oxide nanostructures by organofunctional silanes

  • Thomas Baumgärtel,
  • Christian von Borczyskowski and
  • Harald Graaf

Beilstein J. Nanotechnol. 2013, 4, 218–226, doi:10.3762/bjnano.4.22

Graphical Abstract
  • oxide nanostructure is much more hydrophilic than the surrounding alkyl monolayer, the wetting of the structure is strongly favored. Recent investigations revealed that there is a pronounced water layer formation on top of the oxide structure due to ambient humidity, which takes place on the time scale
PDF
Album
Full Research Paper
Published 25 Mar 2013

Functionalization of vertically aligned carbon nanotubes

  • Eloise Van Hooijdonk,
  • Carla Bittencourt,
  • Rony Snyders and
  • Jean-François Colomer

Beilstein J. Nanotechnol. 2013, 4, 129–152, doi:10.3762/bjnano.4.14

Graphical Abstract
  • two-step technique (a mechanical densification of VA-CNT forests followed by a capillarity-driven wetting along the axis of the CNTs). They revealed that the theoretical limit can be approached, i.e., a distance between two neighboring nanotubes
PDF
Album
Review
Published 22 Feb 2013

Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam-induced deposition as studied by TEM

  • Xiaoxing Ke,
  • Carla Bittencourt,
  • Sara Bals and
  • Gustaaf Van Tendeloo

Beilstein J. Nanotechnol. 2013, 4, 77–86, doi:10.3762/bjnano.4.9

Graphical Abstract
  • value during deposition can lead to a varying pitch in the stripe pattering along the long axis of the nanotube. The ability to pattern the nanostructure with switchable high/low density of nanoclusters provides new potential applications in tunable wetting, adhesion, catalysis and friction properties
PDF
Album
Supp Info
Full Research Paper
Published 04 Feb 2013

Effect of normal load and roughness on the nanoscale friction coefficient in the elastic and plastic contact regime

  • Aditya Kumar,
  • Thorsten Staedler and
  • Xin Jiang

Beilstein J. Nanotechnol. 2013, 4, 66–71, doi:10.3762/bjnano.4.7

Graphical Abstract
  • tribological processes is fundamental to many basic and applied problems, such as wetting, capillarity, adhesion, lubrication, sealing, hardness, micro/nanoindentation, atomic-scale probing, surface modification and manipulation [1][2][3]. The contact of two bodies may be defined by the influential parameters
PDF
Album
Full Research Paper
Published 28 Jan 2013
Graphical Abstract
  • . Polyvinylpyrrolidone (1 g/L) was added as a wetting agent. A Pt foil and a SCE acted as counter and reference electrode, respectively. The potentiostatic electrodeposition of CdS nanowires by using an electrolyte solution containing CdCl2 and thioacetamide, at 70 °C was reported by Mo et al. [99]. Finally, due to its
PDF
Album
Review
Published 17 Dec 2012

Forming nanoparticles of water-soluble ionic molecules and embedding them into polymer and glass substrates

  • Stella Kiel,
  • Olga Grinberg,
  • Nina Perkas,
  • Jerome Charmet,
  • Herbert Kepner and
  • Aharon Gedanken

Beilstein J. Nanotechnol. 2012, 3, 267–276, doi:10.3762/bjnano.3.30

Graphical Abstract
  • , exploiting the difference in wettability between the regions of the patterned polymeric substrate [3]. Suh et al. [3] fabricated single nanocrystal arrays of various sizes on sub-microwells of poly (ethylene glycol) copolymer, using selective wetting of the hydrophilic regions of the exposed substrate
PDF
Album
Full Research Paper
Published 21 Mar 2012

Variations in the structure and reactivity of thioester functionalized self-assembled monolayers and their use for controlled surface modification

  • Inbal Aped,
  • Yacov Mazuz and
  • Chaim N. Sukenik

Beilstein J. Nanotechnol. 2012, 3, 213–220, doi:10.3762/bjnano.3.24

Graphical Abstract
  • controlling the chemical and physical properties of surfaces. The thioester moiety is relatively stable to long-term storage and its structure can be systematically varied so as to provide a well-defined range of reactivity and wetting properties. The oxidation of thioesters with different-chain-length acyl
  • the composition and chemistry of solid interfaces. First introduced by Jacob Sagiv and co-workers [1][2][3], siloxane-anchored SAMs have been used to modify the wetting and composition of variously hydroxylated surfaces. In situ chemical transformations of the SAM surfaces provide an additional
  • trichlorosilanes have been used to make siloxane-anchored monolayers on silicon wafers and quartz. The siloxane-anchored SAMs based on these materials, their tunable wetting properties and their in situ chemical transformations are the focus of this report. Experimental General methods and materials Materials
PDF
Album
Supp Info
Full Research Paper
Published 09 Mar 2012

Molecular-resolution imaging of pentacene on KCl(001)

  • Julia L. Neff,
  • Jan Götzen,
  • Enhui Li,
  • Michael Marz and
  • Regina Hoffmann-Vogel

Beilstein J. Nanotechnol. 2012, 3, 186–191, doi:10.3762/bjnano.3.20

Graphical Abstract
  • organic electronic devices [13]. The adsorption of pentacene on various substrates has been investigated with diffraction methods and STM [14][15][16][17][18]. On single crystalline metal surfaces such as, e.g., Cu(110), Au(111) and Ag(111) [19][20][21][22][23][24], pentacene forms a wetting layer of flat
PDF
Album
Full Research Paper
Published 29 Feb 2012

Impact of cell shape in hierarchically structured plant surfaces on the attachment of male Colorado potato beetles (Leptinotarsa decemlineata)

  • Bettina Prüm,
  • Robin Seidel,
  • Holger Florian Bohn and
  • Thomas Speck

Beilstein J. Nanotechnol. 2012, 3, 57–64, doi:10.3762/bjnano.3.7

Graphical Abstract
  • stabilisation of the plant tissue and reduction of uncontrolled water loss by providing a transport barrier, the cuticle, e.g., influences surface wetting and sometimes allows for self-cleaning by draining of water. Furthermore, the cuticle can provide protection against harmful radiation, influences the
  • angiosperm petals [2]. The function of papillate epidermal cells in petals has been investigated in several studies in the recent years (reviewed in [2]) and the cellular structure was reported to influence the colour and wetting properties of the flower and to improve the grip of pollinating insects [6]. At
PDF
Album
Video
Full Research Paper
Published 23 Jan 2012

Octadecyltrichlorosilane (OTS)-coated ionic liquid drops: Micro-reactors for homogenous catalytic reactions at designated interfaces

  • Xiaoning Zhang and
  • Yuguang Cai

Beilstein J. Nanotechnol. 2012, 3, 33–39, doi:10.3762/bjnano.3.4

Graphical Abstract
  • methyl-terminated, low energy, lyophobic surface. Based on the wetting-driven assembly approach [10], liquid can be assembled on the chemical patterns due to the contrast in surface energy [11][12]. Figure 1a shows a representative OTSpd disc array. Figure 1b shows the same region after a liquid [Bmim]Cl
PDF
Album
Supp Info
Letter
Published 12 Jan 2012

Self-assembly at solid surfaces

  • Sidney R. Cohen and
  • Jacob Sagiv

Beilstein J. Nanotechnol. 2011, 2, 824–825, doi:10.3762/bjnano.2.91

Graphical Abstract
  • amphiphilic monolayers on solid surfaces by adsorption from organic solutions at the liquid–solid interface was first reported in the seminal work of W. A. Zisman and co-workers in the mid-20th century [1]. In that work, attention was focused on the remarkable wetting properties of such monolayers, which were
PDF
Editorial
Published 20 Dec 2011
Other Beilstein-Institut Open Science Activities