Carbohydrate PEGylation, an approach to improve pharmacological potency

M. Eugenia Giorgi, Rosalía Agusti and Rosa M. de Lederkremer
Beilstein J. Org. Chem. 2014, 10, 1433–1444. https://doi.org/10.3762/bjoc.10.147

Cite the Following Article

Carbohydrate PEGylation, an approach to improve pharmacological potency
M. Eugenia Giorgi, Rosalía Agusti and Rosa M. de Lederkremer
Beilstein J. Org. Chem. 2014, 10, 1433–1444. https://doi.org/10.3762/bjoc.10.147

How to Cite

Giorgi, M. E.; Agusti, R.; de Lederkremer, R. M. Beilstein J. Org. Chem. 2014, 10, 1433–1444. doi:10.3762/bjoc.10.147

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Li, C.; Li, T.; Tian, X.; An, W.; Wang, Z.; Han, B.; Tao, H.; Wang, J.; Wang, X. Research progress on the PEGylation of therapeutic proteins and peptides (TPPs). Frontiers in pharmacology 2024, 15, 1353626. doi:10.3389/fphar.2024.1353626
  • Luu, C. H.; Nguyen, N.-T.; Ta, H. T. Unravelling Surface Modification Strategies for Preventing Medical Device-Induced Thrombosis. Advanced healthcare materials 2023, 13, e2301039. doi:10.1002/adhm.202301039
  • Nimbalkar, Y.; Gharat, S. A.; Tanna, V.; Nikam, V. S.; Nabar, S.; Sawarkar, S. P. Modification and Functionalization of Polymers for Targeting to Bone Cancer and Bone Regeneration. Critical reviews in biomedical engineering 2023, 51, 21–58. doi:10.1615/critrevbiomedeng.2023043780
  • Moon, S. H.; Choi, H. N.; Yang, Y. J. Natural/Synthetic Polymer Materials for Bioink Development. Biotechnology and Bioprocess Engineering 2022, 27, 482–493. doi:10.1007/s12257-021-0418-1
  • Eriyagama, D. N.; Yin, Y.; Fang, S. Automated stepwise PEG synthesis using a base-labile protecting group. Tetrahedron 2022, 119, 132861. doi:10.1016/j.tet.2022.132861
  • Mikesell, L.; Eriyagama, D. N. A. M.; Yin, Y.; Lu, B.-Y.; Fang, S. Stepwise PEG synthesis featuring deprotection and coupling in one pot. Beilstein journal of organic chemistry 2021, 17, 2976–2982. doi:10.3762/bjoc.17.207
  • Jeon, S.; Ji, J.; An, H.; Kwon, Y.; Chung, Y. Sulfhydryl-maleimide crosslinking for enhancing catalytic activity and duration of biocatalyst. Materials Chemistry and Physics 2021, 267, 124615. doi:10.1016/j.matchemphys.2021.124615
  • Karakuş, Ö. Ö.; Godugu, K.; Mousa, S. A. Discovery of dual targeting PEGylated BG-P1600-TAT to norepinephrine transporter (NET) and thyrointegrin αvβ3 in the treatment of neuroblastoma. Bioorganic & medicinal chemistry 2021, 43, 116278. doi:10.1016/j.bmc.2021.116278
  • Bhattarai, D. P.; Pokharel, P.; Xiao, D. Surface Functionalization of Polymers. Reactive and Functional Polymers Volume Four; Springer International Publishing, 2020; pp 5–34. doi:10.1007/978-3-030-52052-6_2
  • Khan, M. T.; Nadeem, H.; Khan, A.-u.; Abbas, M.; Arif, M.; Malik, N. S.; Malik, Z.; Javed, I. Amino acid conjugates of 2-mercaptobenzimidazole provide better anti-inflammatory pharmacology and improved toxicity profile. Drug development research 2020, 81, 1057–1072. doi:10.1002/ddr.21728
  • Platella, C.; Pirota, V.; Musumeci, D.; Rizzi, F.; Iachettini, S.; Zizza, P.; Biroccio, A.; Freccero, M.; Montesarchio, D.; Doria, F. Trifunctionalized Naphthalene Diimides and Dimeric Analogues as G-Quadruplex-Targeting Anticancer Agents Selected by Affinity Chromatography. International journal of molecular sciences 2020, 21, 1964. doi:10.3390/ijms21061964
  • Daly, H. C.; Conroy, E.; Todor, M.; Wu, D.; Gallagher, W. M.; O'Shea, D. F. An EPR Strategy for Bio-responsive Fluorescence Guided Surgery with Simulation of the Benefit for Imaging. Theranostics 2020, 10, 3064–3082. doi:10.7150/thno.42702
  • Thi, T. T. H.; Pilkington, E. H.; Nguyen, D. H.; Lee, J. S.; Park, K. D.; Truong, N. P. The Importance of Poly(ethylene glycol) Alternatives for Overcoming PEG Immunogenicity in Drug Delivery and Bioconjugation. Polymers 2020, 12, 298. doi:10.3390/polym12020298
  • Behrens, C.; Buchardt, J. Sialyltransferase-mediated glycoPEGylation. Polymer-Protein Conjugates; Elsevier, 2020; pp 251–269. doi:10.1016/b978-0-444-64081-9.00012-7
  • Giorgi, M. E.; Agusti, R.; de Lederkremer, R. M. Glycan-targeted PEGylation for selective modification of proteins. Polymer-Protein Conjugates; Elsevier, 2020; pp 235–250. doi:10.1016/b978-0-444-64081-9.00011-5
  • Nguyen, D. H.; Bach, L. G.; Tran, D.-H. N.; Du Cao, V.; Nguyen, T. N. Q.; Le, T. T. H.; Tran, T. T.; Thi, T. T. H. Partial Surface Modification of Low Generation Polyamidoamine Dendrimers: Gaining Insight into their Potential for Improved Carboplatin Delivery. Biomolecules 2019, 9, 214. doi:10.3390/biom9060214
  • Adeyemi, S. A.; Kumar, P.; Choonara, Y. E.; Pillay, V. Stealth Properties of Nanoparticles Against Cancer: Surface Modification of NPs for Passive Targeting to Human Cancer Tissue in Zebrafish Embryos. Surface Modification of Nanoparticles for Targeted Drug Delivery; Springer International Publishing, 2019; pp 99–124. doi:10.1007/978-3-030-06115-9_5
  • Li, J.; Chen, M.; Liu, Z.; Zhang, L.; Felding, B. H.; Moremen, K. W.; Lauvau, G.; Abadier, M.; Ley, K.; Wu, P. A Single-Step Chemoenzymatic Reaction for the Construction of Antibody–Cell Conjugates. ACS central science 2018, 4, 1633–1641. doi:10.1021/acscentsci.8b00552
  • Shen, H.; Wang, G. Encyclopedia of Polymer Science and Technology; Wiley, 2018; pp 1–44. doi:10.1002/0471440264.pst528.pub2
  • Filatova, L.; Klyachko, N. L.; Kudryashova, E. V. Targeted delivery of anti-tuberculosis drugs to macrophages: targeting mannose receptors. Russian Chemical Reviews 2018, 87, 374–391. doi:10.1070/rcr4740

Patents

  • ALONSO FERNANDEZ MARÍA JOSÉ; TEIJEIRO OSORIO DESIREÉ; TEIJEIRO VALIÑO CARMEN MARÍA; CADETE PIRES ANA. DRUG DELIVERY SYSTEMS AND METHODS COMPRISING POLYSIALIC ACID AND/OR OTHER POLYMERS. WO 2019086627 A1, May 9, 2019.
Other Beilstein-Institut Open Science Activities