The digital code driven autonomous synthesis of ibuprofen automated in a 3D-printer-based robot

Philip J. Kitson, Stefan Glatzel and Leroy Cronin
Beilstein J. Org. Chem. 2016, 12, 2776–2783. https://doi.org/10.3762/bjoc.12.276

Supporting Information

Supporting information is available containing full experimental details, the source code of the process control software, along with information on the 3D printing settings for the reactor vessel fabrication. Also available are a video demonstrating the liquid handling for the automated reaction sequence and the .STL digital model files of the reactor vessels fabricated by the robotic platform.

Supporting Information File 1: Full experimental details, the source code of the process control software, along with information on the 3D printing settings for the reactor vessel fabrication.
Format: PDF Size: 1.6 MB Download
Supporting Information File 2: Digital 3D model files archive for the reaction vessels used.
Format: ZIP Size: 187.1 KB Download
Supporting Information File 3: Demonstration video of the liquid handling of the automated reaction sequence.
Format: MP4 Size: 82.7 MB Download

Cite the Following Article

The digital code driven autonomous synthesis of ibuprofen automated in a 3D-printer-based robot
Philip J. Kitson, Stefan Glatzel and Leroy Cronin
Beilstein J. Org. Chem. 2016, 12, 2776–2783. https://doi.org/10.3762/bjoc.12.276

How to Cite

Kitson, P. J.; Glatzel, S.; Cronin, L. Beilstein J. Org. Chem. 2016, 12, 2776–2783. doi:10.3762/bjoc.12.276

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 142.1 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Sultana, N.; Ali, A.; Waheed, A.; Aqil, M. 3D Printing in pharmaceutical manufacturing: Current status and future prospects. Materials Today Communications 2024, 38, 107987. doi:10.1016/j.mtcomm.2023.107987
  • Salley, D.; Manzano, J. S.; Kitson, P. J.; Cronin, L. Robotic Modules for the Programmable Chemputation of Molecules and Materials. ACS central science 2023, 9, 1525–1537. doi:10.1021/acscentsci.3c00304
  • Zhu, X. Toward the Uniform of Chemical Theory, Simulation, and Experiments in Metaverse Technology. Precision Chemistry 2023, 1, 192–198. doi:10.1021/prechem.3c00045
  • Bácskay, I.; Ujhelyi, Z.; Fehér, P.; Arany, P. The Evolution of the 3D-Printed Drug Delivery Systems: A Review. Pharmaceutics 2022, 14, 1312. doi:10.3390/pharmaceutics14071312
  • Hammer, A. J. S.; Leonov, A.; Bell, N. L.; Cronin, L. Chemputation and the Standardization of Chemical Informatics. JACS Au 2021, 1, 1572–1587. doi:10.1021/jacsau.1c00303
  • Alimi, O. A.; Meijboom, R. Current and future trends of additive manufacturing for chemistry applications: a review. Journal of materials science 2021, 56, 16824–16850. doi:10.1007/s10853-021-06362-7
  • de Carvalho, M. C. Miau, a microbalance autosampler. HardwareX 2021, 10, e00215. doi:10.1016/j.ohx.2021.e00215
  • Gervasi, A.; Cardol, P.; Meyer, P. E. Open-hardware wireless controller and 3D-printed pumps for efficient liquid manipulation. HardwareX 2021, 9, e00199. doi:10.1016/j.ohx.2021.e00199
  • Cao, L.; Russo, D.; Lapkin, A. A. Automated robotic platforms in design and development of formulations. AIChE Journal 2021, 67. doi:10.1002/aic.17248
  • Processing of Chemicals at Scale. Chemistry for Sustainable Technologies: A Foundation; The Royal Society of Chemistry, 2021; pp 330–414. doi:10.1039/bk9781788012058-00330
  • Gordeev, E. G.; Ananikov, V. P. Widely accessible 3D printing technologies in chemistry, biochemistry and pharmaceutics: applications, materials and prospects. Russian Chemical Reviews 2020, 89, 1507–1561. doi:10.1070/rcr4980
  • Prabhu, G. R. D.; Urban, P. L. Elevating Chemistry Research with a Modern Electronics Toolkit. Chemical reviews 2020, 120, 9482–9553. doi:10.1021/acs.chemrev.0c00206
  • Wang, X.; Guo, W.; Abu-Reziq, R.; Magdassi, S. High-Complexity WO3-Based Catalyst with Multi-Catalytic Species via 3D Printing. Catalysts 2020, 10, 840. doi:10.3390/catal10080840
  • Hübner, E. G.; Lederle, F. Spezielle labortechnische Reaktoren: 3D-gedruckte Reaktoren. Handbuch Chemische Reaktoren; Springer Berlin Heidelberg, 2020; pp 1361–1389. doi:10.1007/978-3-662-56434-9_48
  • Spoerk, M.; Holzer, C.; Gonzalez-Gutierrez, J. Material extrusion-based additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage. Journal of Applied Polymer Science 2019, 137, 48545. doi:10.1002/app.48545
  • Souto, E. B.; de Campos, J. C.; Filho, S. C.; Teixeira, M. C.; Martins-Gomes, C.; Zielińska, A.; Carbone, C.; Silva, A. M. 3D printing in the design of pharmaceutical dosage forms. Pharmaceutical development and technology 2019, 24, 1044–1053. doi:10.1080/10837450.2019.1630426
  • Arany, P.; Róka, E.; Mollet, L.; Coleman, A. W.; Perret, F.; Kim, B. J.; Kovács, R.; Kazsoki, A.; Zelkó, R.; Gesztelyi, R.; Ujhelyi, Z.; Fehér, P.; Váradi, J.; Fenyvesi, F.; Vecsernyés, M.; Bácskay, I. Fused Deposition Modeling 3D Printing: Test Platforms for Evaluating Post-Fabrication Chemical Modifications and In-Vitro Biological Properties. Pharmaceutics 2019, 11, 277. doi:10.3390/pharmaceutics11060277
  • Penny, M. R.; Rao, Z. X.; Peniche, B. F.; Hilton, S. T. Modular 3D Printed Compressed Air Driven Continuous‐Flow Systems for Chemical Synthesis. European Journal of Organic Chemistry 2019, 2019, 3783–3787. doi:10.1002/ejoc.201900423
  • Capel, A. J.; Rimington, R. P.; Lewis, M. P.; Christie, S. D. R. 3D printing for chemical, pharmaceutical and biological applications. Nature Reviews Chemistry 2018, 2, 422–436. doi:10.1038/s41570-018-0058-y
  • Caramelli, D.; Salley, D.; Henson, A. B.; Camarasa, G. A.; Sharabi, S.; Keenan, G.; Cronin, L. Networking chemical robots for reaction multitasking. Nature communications 2018, 9, 3406. doi:10.1038/s41467-018-05828-8

Patents

  • CRONIN LEROY. DIGITAL REACTIONWARE. WO 2019137954 A1, July 18, 2019.
Other Beilstein-Institut Open Science Activities