This search combines search strings from the content search (i.e. "Full Text", "Author", "Title", "Abstract", or "Keywords") with "Article Type" and "Publication Date Range" using the AND operator.
Beilstein J. Org. Chem. 2025, 21, 1306–1323, doi:10.3762/bjoc.21.100
Graphical Abstract
Figure 1: (a) BDE of C–H. (b) Direct functionalization of C–H catalyzed by transition-metal. (c) Direct funct...
Figure 2: (a) Amidyl radical-enabled hydrogen atom transfer. (b) Substituent effects to amidyl radical proper...
Figure 3: Representative photocatalysts discussed in this review.
Scheme 1: Alkylation of C(sp3)–H catalyzed by amidyl radical under visible light.
Scheme 2: Direct heteroarylation of C(sp3)–H catalyzed by amidyl radical under visible light.
Scheme 3: Alkylation of C(sp3)–H catalyzed by amidyl radical and metal-free photocatalyst under visible light....
Scheme 4: Alkylation of C(sp3)–H, Si–H, and Ge–H catalyzed by amidyl radical under visible light.
Scheme 5: Direct heteroarylation of C(sp3)–H catalyzed by synergistic promotion of amidyl radical and photoca...
Scheme 6: Direct B–H functionalization of icosahedral carboranes catalyzed by amidyl radical under visible li...
Scheme 7: Nucleophilic amination of C(sp3)–H enabled by amidyl radical under visible light.
Scheme 8: Direct heteroarylation of C(sp3)–H and C(sp3)–H without the presence of strong bases, acids, or oxi...
Scheme 9: Xanthylation of C(sp3)–H addressed by amidyl radical under visible light.
Scheme 10: Xanthylation of C(sp3)–H in polyolefins addressed by amidyl radical under visible light.
Scheme 11: Site-selective C(sp3)–H bromination implemented by amidyl radical under visible light.
Scheme 12: Site-selective chlorination of C(sp3)–H in natural products implemented by amidyl radical under vis...
Scheme 13: Alkylation of C(sp3)–H catalyzed by amidyl radical photocatalyst under visible light.
Beilstein J. Org. Chem. 2024, 20, 661–671, doi:10.3762/bjoc.20.59
Scheme 1: Background (a and b) and proposed carboamination MCR with diazo esters (c). a) Selected bioactive γ...
Scheme 2: Substrate scope of diazo compounds, 1,3-dienes and amines. aReactions (1/2/3/Pd(OAc)2/Xantphos = 0....
Scheme 3: Substrate scope of diazo compounds, allenes and amines. aReactions (1/5/3/Pd(OAc)2/Xantphos = 0.3.0...
Scheme 4: Mechanistic experiments. a) Radical trapping experiments with TEMPO. b) Exclusion of possible inter...
Scheme 5: Proposed mechanisms for the carboamination of 1,3-dienes or allenes with diazo esters and amines.
Scheme 6: Scale-up reactions and synthetic transformations. Reaction conditions: a) LiAlH4, THF, 0 °C; b) MeM...
Beilstein J. Org. Chem. 2022, 18, 374–380, doi:10.3762/bjoc.18.42
Figure 1: Structures of compounds 1–7.
Figure 2: 1H,1H-COSY and selected key HMBC correlations of 1–4.
Figure 3: Selected NOESY correlations of compounds 1–4.
Figure 4: X-ray crystallographic analysis of compounds 1–3.
Figure 5: Effects of compound 1 on the anti-inflammation of zebrafish internodes. ## Indicates that the CuSO4...