10 article(s) from Nolan, Steven P
Graphical Abstract
Scheme 1: Catalysts studied by DFT calculations.
Scheme 2: Precatalyst initiation in olefin metathesis (L = NHC ligand).
Figure 1: Topographic steric maps (plane xy) of the NHC ligands of species I for the studied SIMes–Ru complex...
Figure 2: Intermediate II for catalysts a) 1 and b) 5 (important bond lengths are given in Å).
Graphical Abstract
Scheme 1: Dual-gold-catalysed hydrophenoxylation of alkynes.
Scheme 2: Exploring the functional group tolerance. Reaction conditions: 1a (0.50 mmol, 1 equiv), 2a–o (0.55 ...
Scheme 3: Hydrophenoxylation using polyphenols. Reaction conditions: 1a (1 mmol, 2 equiv), 2p–s (0.50 mmol, 1...
Scheme 4: Hydrophenoxylation of (un)symmetrical alkynes. Reaction conditions: 1b–k (0.50 mmol, 1 equiv), 2t (...
Scheme 5: Regioselective hydrophenoxylation of unsymmetrical alkynes. Reaction conditions: 1l–p (1 equiv), 2a...
Graphical Abstract
Scheme 1: Polymerization of 7-oxanorbornene in water.
Scheme 2: Synthesis of the first well-defined ruthenium carbene.
Scheme 3: Synthesis of Grubbs' 1st generation catalyst.
Figure 1: NHC-Ruthenium complexes and widely used NHC carbenes.
Scheme 4: Access to 21 from the Grubbs’ 1st generation catalyst and its one-pot synthesis.
Scheme 5: Synthesis of supported Hoveyda-type catalyst.
Figure 2: Scope of RCM reactions with supported Hoveyda-type catalyst. Reaction conditions: 24 (5 mol %), non...
Scheme 6: Synthesis of 33 by Hoveyda and Blechert.
Figure 3: Synthesis of chiral Hoveyda–Grubbs type catalyst and its use in RO/CM.
Scheme 7: Synthesis of 41.
Figure 4: RCM reactions in air using 41 as catalyst. Reaction conditions: 41 (5 mol %), MeOH (0.05 M), 22 °C,...
Figure 5: CM-type reactions in air using 41 as catalyst. Reaction conditions: 41 (5 mol %), 22 °C, 12 h, in a...
Figure 6: Grela's complex (54) and reaction scope in air. Reaction conditions: catalyst, substrate (0.25 mmol...
Figure 7: Abell's complex (61) and its RCM reaction scope in air. Reaction condition: 10 mol % of 61, refluxi...
Figure 8: Catalysts used by Meier in air.
Figure 9: Ammonium chloride-tagged complexes.
Figure 10: Scorpio-type complexes.
Scheme 8: Synthesis of Grubbs' 3rd generation catalyst.
Figure 11: Indenylidene complexes.
Figure 12: Commercially available complexes evaluated under air.
Figure 13: Grela's N,N-unsymmetrically substituted complexes.
Scheme 9: Synthesis of phosphite-based catalysts.
Figure 14: Catalysts used by the Cazin group.
Figure 15: RCM scope in air with catalysts 33, 85 and 98a. Reaction conditions: Catalyst, substrate (0.25 mmol...
Figure 16: Synthesis of Schiff base-ruthenium complexes.
Scheme 10: Schiff base–ruthenium complexes synthesized by Verpoort.
Scheme 11: Synthesis of mixed Schiff base–NHC complexes.
Figure 17: Veerport's indenylidene Schiff-base complexes.
Graphical Abstract
Figure 1: ‘ITent’ family of ligands, including IPr. First row: percentage buried volume (% Vbur) calculated i...
Scheme 1: Synthesis of gold complexes bearing the ITent ligands.
Scheme 2: Silver-free synthesis of [Au(ITent)(NTf2)] complexes.
Graphical Abstract
Scheme 1: Straightforward synthesis of organogold complexes via deprotonation reactions, using 1.
Scheme 2: Scope of the reaction between 1 and several (hetero)aromatic amines. Reaction conditions: 1 (1 equi...
Figure 1: X-ray crystal structures of complexes 2, 3, 7, 8, 10, 11 and 12. Hydrogen atoms are omitted for cla...
Figure 2: Selected examples of gold–NHC amide complexes under UV light (λ = 366 nm).
Figure 3: Excitation (blue) and emission (pink) data for complex 3, bearing a 2-pyridine ligand (see inset).
Figure 4: (a) LUMO, (b) HOMO and (c) HOMO-1 of complex 3.
Graphical Abstract
Figure 1: [Pd(NHC)(cin)Cl] catalysts examined in direct arylation.
Scheme 1: Synthesis of [Pd(IPr*Tol)(cin)Cl] (4).
Figure 2: Molecular structure of 4. H atoms were omitted for clarity. Selected bond lengths (Å) and angles (°...
Figure 3: Previously reported catalytic systems in the direct arylation of benzothiophene (6).
Graphical Abstract
Scheme 1: Silver-free C–H functionalisation using [Au(OH)(IPr)].
Scheme 2: C–H functionalisation of 2 using gold-phosphine complexes and a silver additive.
Figure 1: X-ray structure of [Au(OPiv)(IPr)] 3. Thermal ellipsoids are shown at the 50% probability level. H ...
Scheme 3: Carboxylation of 2 using 1 and Ag2O.
Graphical Abstract
Figure 1: Representative olefin metathesis catalysts.
Figure 2: Highly active olefin metathesis catalysts bearing NHC with backbone substitution.
Scheme 1: Synthesis of the free NHCs.
Scheme 2: Synthesis of [RhCl(CO)2(NHC)] complexes.
Scheme 3: Synthesis of [RuCl2(NHC)(PCy3)(Ind)] complexes.
Graphical Abstract
Figure 1: General layout for modifications of ruthenium-based olefin metathesis catalysts (red: anionic ligan...
Scheme 1: Synthesis of 1, 2 and 3.
Figure 2: Details of the 1H NMR spectra acquired during the synthesis of 2 and the FD-MS spectrum of 2 isolat...
Figure 3: ORTEP drawing of 3. Thermal ellipsoids are drawn at 50% probability level. Hydrogen atoms are omitt...
Figure 4: Polymerisation of 4 as a function of time, initiated by 1, 2 or 3, monitored by 1H NMR spectroscopy...
Figure 5: Polymerisations of 6 as a function of time, initiated by 1–3, monitored by 1H NMR spectroscopy (sol...
Figure 6: The RCM reaction of 7 as a function of time, catalysed by 1, 2 or 3, monitored by 1H NMR spectrosco...