This search combines search strings from the content search (i.e. "Full Text", "Author", "Title", "Abstract", or "Keywords") with "Article Type" and "Publication Date Range" using the AND operator.
Beilstein J. Org. Chem. 2026, 22, 205–212, doi:10.3762/bjoc.22.14
Graphical Abstract
Figure 1: Representation of the general practices for the induction of helical chirality in organic scaffolds...
Scheme 1: Asymmetric synthesis of carbohelicenes via peri-C–H functionalization.
Figure 2: Stereomodel for peri-terminal functionalization of carbohelicene. (Figure 2 was reproduced from [32] (© 2024 X....
Scheme 2: Scale-up synthesis and post-synthetic application of chiral helical product 3.
Scheme 3: Asymmetric peri-C–H functionalization of nitro-substituted oxa[5]helicenes.
Scheme 4: Scale-up synthesis and post-synthetic application of chiral helical product 8g.
Scheme 5: Post-synthetic transformation of product 8g to chiral phosphine ligand 12 and its application in Pd...
Figure 3: Stereomodel for the asymmetric peri-C–H functionalization of oxa[5]helicene. (Figure 3 was reproduced from [33]...
Beilstein J. Org. Chem. 2019, 15, 2419–2427, doi:10.3762/bjoc.15.234
Figure 1: Oxazolone pseudodipeptide 1 and tetrapeptide 2a.
Scheme 1: Synthesis of linear azido ester dipeptide 5 and tetrapeptide 7.
Scheme 2: Synthesis of oxazolone pseudopeptides 1, 2a and 2b.
Figure 2: Characteristic NOEs of 2a.
Figure 3: DMSO titration study of 2a.
Figure 4: 1H NMR temperature study of 2a.
Figure 5: Optimized helical conformations of (A) 2a, (B) 2b and (C) 9.
Figure 6: Ion transport activity (A) for 1, (B) for 2a, across EYPC-LUVs HPTS.
Figure 7: Cation (A) and anion (B) transport activity of 2a.
Figure 8: Comparison of the ion transport activity of 2a and 2b at 20 µM across EYPC-LUVslucigenin (A). Conce...
Beilstein J. Org. Chem. 2013, 9, 2097–2102, doi:10.3762/bjoc.9.246
Scheme 1: Gold-catalyzed approaches towards spiroindolines.
Scheme 2: Plausible mechanism for the domino sequence.